Алгоритм Форда-Беллмана — различия между версиями
Строка 21: | Строка 21: | ||
{{Лемма | {{Лемма | ||
|statement=Пусть <tex>G = (V, E) </tex> -взвешенный ориентированный граф, <tex> s </tex> — стартовая вершина. Тогда после завершения <tex> \mid V[G] \mid - 1 </tex> итераций цикла для всех вершин, достижимых из s выполняется равенство <tex> d[v] = \delta (s, v) </tex>. | |statement=Пусть <tex>G = (V, E) </tex> -взвешенный ориентированный граф, <tex> s </tex> — стартовая вершина. Тогда после завершения <tex> \mid V[G] \mid - 1 </tex> итераций цикла для всех вершин, достижимых из s выполняется равенство <tex> d[v] = \delta (s, v) </tex>. | ||
− | |proof=Рассмотрим произвольную вершину <tex> v </tex> достижимую из <tex> s </tex>, <tex> p = {v_0,..., v_{k}} </tex>, где <tex> v_0 = s </tex>, <tex> v_{k} = v </tex> — кратчайший ациклический путь из <tex> s </tex> в <tex> v </tex>. Путь <tex> p </tex> содержит не более <tex> \mid V[G] \mid - 1 </tex> ребер. На каждой из <tex> \mid V[G] \mid - 1 </tex> итераций цикла релаксируются <tex> \mid E[G] \mid </tex> ребер. Среди ребер, прорелаксированных во время i-й итерации находится ребро <tex> (v_{i-1}, v_{i}) </tex>. Поэтому выполнены равенства <tex>d[v] = d[v_{k}] = \delta (s, v_{k}) = \delta (s, v))</tex> | + | |proof=Рассмотрим произвольную вершину <tex> v </tex> достижимую из <tex> s </tex>, <tex> p = {v_0,..., v_{k}} </tex>, где <tex> v_0 = s </tex>, <tex> v_{k} = v </tex> — кратчайший ациклический путь из <tex> s </tex> в <tex> v </tex>. Путь <tex> p </tex> содержит не более <tex> \mid V[G] \mid - 1 </tex> ребер. На каждой из <tex> \mid V[G] \mid - 1 </tex> итераций цикла релаксируются <tex> \mid E[G] \mid </tex> ребер. Среди ребер, прорелаксированных во время i-й итерации находится ребро <tex> (v_{i-1}, v_{i}) </tex>. Поэтому выполнены равенства <tex>d[v] = d[v_{k}] = \delta (s, v_{k}) = \delta (s, v))</tex>. |
+ | }} | ||
+ | |||
+ | {{Теорема | ||
+ | |statement=Пусть <tex>G = (V, E) </tex> -взвешенный ориентированный граф, <tex> s </tex> — стартовая вершина. Если граф <tex> G </tex> не содержит отрицательных циклов, достижимых из вершины <tex> s </tex>, то алгоритм возвращает <tex> true </tex> и для всех <tex> v \in V[G] \ d[v] = \delta (s, v)</tex>. Если граф <tex> G </tex> содержит отрицательные циклы, достижимые из вершины <tex> s </tex>, то алгоритм возвращает <tex> false </tex> | ||
+ | |proof=Пусть граф <tex> G </tex> не содержит отрицательных циклов, достижимых из вершины <tex> s </tex>. Тогда если вершина <tex> v </tex> достижима из <tex> s </tex>, то по лемме <tex> d[v] = \delta (s, v)</tex>. Если вершина <tex> v </tex> не достижима из <tex> s </tex>, то <tex> d[v] = \delta (s, v) = \mathcal {1}</tex> из несуществования пути. Теперь докажем что алгоритм вернет значение <tex> true </tex>. После выполнения алгоритма верно, что для всех <tex> (u, v) \in E[G], \ d[v] = \delta (s, v) \leqslant \delta (s, u) + \omega (u,v) = d[u] + \omega (u,v)</tex>, значит ни одна из проверок не вернет значения <tex> false </tex>. | ||
+ | Пусть граф <tex> G </tex> содержит отрицательный цикл <tex> c = {v_0,...,v_{k}} </tex>, где <tex> v_0 = v_{k} </tex>, достижимый из вершины <tex> s </tex>. Тогда <tex>\sum_{i=1}^{k} {\omega (v_{i-1}, v_{i})} < 0 </tex>. Предположим, что алгоритм возвращает <tex> true </tex>, тогда для <tex> i = 1,...,k </tex> выполняется <tex> d[v_{i}] \leqslant d[v_{i-1}] + \omega (v_{i-1}, v_{i}) </tex>. Просуммируем эти неравенства по всему циклу: <tex>\sum_{i=1}^{k} {d[v_{i}]} \leqslant \sum_{i=1}^{k} {d[v_{i-1}]} + \sum_{i=1}^{k} {\omega (v_{i-1}, v_{i})} </tex>. Из того, что <tex> v_0 = v_{k} </tex> следует, что <tex> \sum^{k}_{i=1} {d[v_{i}]} = \sum_{i=1}^{k} {d[v_{i - 1}]} </tex>. Получили, что <tex> \sum_{i=1}^{k} {\omega (v_{i-1}, v_{i})} >= 0 </tex>, что противоречит отрицательности цикла <tex> c </tex>. | ||
}} | }} | ||
==Сложность== | ==Сложность== | ||
Инициализация занимает <tex> \Theta (V) </tex> времени, каждый из <tex> \mid V[G] \mid - 1 </tex> проходов требует <tex> \Theta (E) </tex> времени, обход по всем ребрам для проверки наличия отрицательного цикла занимает <tex>O(E)</tex> времени. Итого алгоритм Беллмана-Форда работает за <tex>O(V E)</tex> времени. | Инициализация занимает <tex> \Theta (V) </tex> времени, каждый из <tex> \mid V[G] \mid - 1 </tex> проходов требует <tex> \Theta (E) </tex> времени, обход по всем ребрам для проверки наличия отрицательного цикла занимает <tex>O(E)</tex> времени. Итого алгоритм Беллмана-Форда работает за <tex>O(V E)</tex> времени. |
Версия 07:53, 1 декабря 2010
Эта статья находится в разработке!
Алгоритм
Для заданного взвешенного графа
алгоритм находит кратчайшие пути из заданной вершины до всех остальных вершин, в случае когда в графе содержатся отрицательные циклы достижимые из алгоритм сообщает, что кратчайших путей не существует.Псевдокод
Bellman_Ford(G, s) for для каждойdo for to do for для каждого ребра do if then for для каждого ребра do if then return return
Корректность алгоритма Беллмана-Форда
Лемма: |
Пусть -взвешенный ориентированный граф, — стартовая вершина. Тогда после завершения итераций цикла для всех вершин, достижимых из s выполняется равенство . |
Доказательство: |
Рассмотрим произвольную вершину | достижимую из , , где , — кратчайший ациклический путь из в . Путь содержит не более ребер. На каждой из итераций цикла релаксируются ребер. Среди ребер, прорелаксированных во время i-й итерации находится ребро . Поэтому выполнены равенства .
Теорема: |
Пусть -взвешенный ориентированный граф, — стартовая вершина. Если граф не содержит отрицательных циклов, достижимых из вершины , то алгоритм возвращает и для всех . Если граф содержит отрицательные циклы, достижимые из вершины , то алгоритм возвращает |
Доказательство: |
Пусть граф Пусть граф не содержит отрицательных циклов, достижимых из вершины . Тогда если вершина достижима из , то по лемме . Если вершина не достижима из , то из несуществования пути. Теперь докажем что алгоритм вернет значение . После выполнения алгоритма верно, что для всех , значит ни одна из проверок не вернет значения . содержит отрицательный цикл , где , достижимый из вершины . Тогда . Предположим, что алгоритм возвращает , тогда для выполняется . Просуммируем эти неравенства по всему циклу: . Из того, что следует, что . Получили, что , что противоречит отрицательности цикла . |
Сложность
Инициализация занимает
времени, каждый из проходов требует времени, обход по всем ребрам для проверки наличия отрицательного цикла занимает времени. Итого алгоритм Беллмана-Форда работает за времени.