Участник:Dominica — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Решение)
Строка 5: Строка 5:
  
 
==Решение==
 
==Решение==
 
{{Лемма
 
|id=lemma1
 
|statement= Пусть все работы отсортированы в порядке неубывания дедлайнов <tex>d_i</tex>.
 
Тогда существует оптимальное расписание вида <tex>i_1, i_2, \ldots, i_s, i_{s+1}, \ldots, i_n </tex>, такое, что  <tex>i_1 < i_2 < \ldots < i_s </tex> {{---}} номера работ, которые успеют выполниться вовремя, а  <tex>i_{s+1}, \ldots, i_n </tex> {{---}} номера просроченных работ.
 
|proof= Пусть у нас есть некоторое оптимальное раписание <tex>S</tex>. Получим необходимое нам расписание путем переставления некоторых работ.
 
#Если работа с номером <tex> i</tex>  выполнится  в <tex>S</tex> с опозданием, то переставим эту работу в конец. При этом, так как работа просрочна в оптимальном расписании <tex>S</tex>, при такой перестановке не произойдет увеличения целевой функции.
 
#Если работы с номерами <tex>i</tex> и <tex>j</tex> в расписании <tex>S</tex> выполняются вовремя, но при этом <tex>d_i < d_j </tex>, но <tex>j</tex> стоит в <tex>S</tex> раньше <tex>i</tex>. Тогда переставим работу с номером <tex>j</tex> так, чтобы она выполнялась после работы <tex>i</tex>. Таким образом, каждая из работ, находившихся в <tex>S</tex> между <tex>j</tex> и <tex>i</tex>, включая <tex>i</tex>, будет выполняться в новом расписании на <tex>p_j</tex> единиц времени раньше. Эта перестановка не повлияет на оптимальнось расписания:
 
#*Ни одна из работ, котарая успевала выполниться в расписании <tex>S</tex>, не попадет в список просроченных работ при переставлении её на более раннее время.
 
#*Число работ, не успевающих выполниться вовремя, не может уменьшится, иначе бы возникло противоречие в исходным выбором <tex>S</tex>, как оптимального решения.
 
#*Поскольку <tex>d_i < d_j </tex> и работа <tex>i</tex> будет заканчиваться на <tex>p_j</tex> единиц времени раньше, то стоящая сразу послее нее работа <tex>j</tex> тоже будет успевать выполниться.
 
}}
 
 
 
Применим для решения данной задачи [[Динамическое программирование|динамическое программирование]].
 
Применим для решения данной задачи [[Динамическое программирование|динамическое программирование]].
 
Обозначим <tex>T = \sum\limits_{i=1}^n p_i</tex>/
 
Обозначим <tex>T = \sum\limits_{i=1}^n p_i</tex>/
Строка 62: Строка 49:
  
 
==Доказательство корректности и оптимальности==
 
==Доказательство корректности и оптимальности==
 +
 +
{{Лемма
 +
|id=lemma1
 +
|statement= Пусть все работы отсортированы в порядке неубывания дедлайнов <tex>d_i</tex>.
 +
Тогда существует оптимальное расписание вида <tex>i_1, i_2, \ldots, i_s, i_{s+1}, \ldots, i_n </tex>, такое, что  <tex>i_1 < i_2 < \ldots < i_s </tex> {{---}} номера работ, которые успеют выполниться вовремя, а  <tex>i_{s+1}, \ldots, i_n </tex> {{---}} номера просроченных работ.
 +
|proof= Пусть у нас есть некоторое оптимальное раписание <tex>S</tex>. Получим необходимое нам расписание путем переставления некоторых работ.
 +
#Если работа с номером <tex> i</tex>  выполнится  в <tex>S</tex> с опозданием, то переставим эту работу в конец. При этом, так как работа просрочна в оптимальном расписании <tex>S</tex>, при такой перестановке не произойдет увеличения целевой функции.
 +
#Если работы с номерами <tex>i</tex> и <tex>j</tex> в расписании <tex>S</tex> выполняются вовремя, но при этом <tex>d_i < d_j </tex>, но <tex>j</tex> стоит в <tex>S</tex> раньше <tex>i</tex>. Тогда переставим работу с номером <tex>j</tex> так, чтобы она выполнялась после работы <tex>i</tex>. Таким образом, каждая из работ, находившихся в <tex>S</tex> между <tex>j</tex> и <tex>i</tex>, включая <tex>i</tex>, будет выполняться в новом расписании на <tex>p_j</tex> единиц времени раньше. Эта перестановка не повлияет на оптимальнось расписания:
 +
#*Ни одна из работ, котарая успевала выполниться в расписании <tex>S</tex>, не попадет в список просроченных работ при переставлении её на более раннее время.
 +
#*Число работ, не успевающих выполниться вовремя, не может уменьшится, иначе бы возникло противоречие в исходным выбором <tex>S</tex>, как оптимального решения.
 +
#*Поскольку <tex>d_i < d_j </tex> и работа <tex>i</tex> будет заканчиваться на <tex>p_j</tex> единиц времени раньше, то стоящая сразу послее нее работа <tex>j</tex> тоже будет успевать выполниться.
 +
}}
  
 
==См. также ==
 
==См. также ==
 
* [[Классификация задач]]
 
* [[Классификация задач]]
* [[1precpmtnrifmax|<tex>1 \mid prec, pmtn, r_i \mid f_{\max}</tex>]]
+
* [[R2Cmax|<tex>R2 \mid \mid C_{max}</tex>]]
 +
* [[1ripipsumwu|<tex> 1 \mid r_i,p_i=p \mid \sum w_i U_i</tex>]]
 +
* [[1pi1sumwu|<tex>1 \mid p_{i} = 1 \mid \sum w_{i}U_{i}</tex>]]
 +
 
 
== Источники информации ==
 
== Источники информации ==
* P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 19 - 20
+
* P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 26 - 28

Версия 07:24, 4 июня 2016

[math]1 \mid\mid \sum w_i U_i[/math]

Для каждой работы заданы время выполнения [math] p_i,[/math] дедлаин [math]d_i[/math] и стоимось выполнения этой работы [math]w_i \geqslant 0[/math] Необходимо сотавить такое расписание, что [math]\sum w_i U_i[/math] будет минимальна.

Решение

Применим для решения данной задачи динамическое программирование. Обозначим [math]T = \sum\limits_{i=1}^n p_i[/math]/ Для всех [math]t = 0, 1, \ldots, T [/math] и [math]j = 1, \ldots, n[/math] будем рассчитывать [math]F_j(t)[/math] — значение целевой функции при условии, что были рассмотрены первые [math]j[/math] работ и общее время выполнения тех из них, что будут закончены вовремя, не превышает [math]t[/math]. Если [math]0 \leqslant t \leqslant d_j [/math] и работа [math]j[/math] успевает выполниться вовремя в расписании, соответствующем [math]F_j(t)[/math], то [math]F_j(t) = F_{j- 1}(t - p_j)[/math], иначе [math]F_j(t) = F_{j- 1}(t) + w_i[/math]. Если [math]t \gt d_j[/math], то [math]F_j(t) = F_{j}(d_j)[/math], поскольку все работы с номерами [math]j = 1, \ldots, j[/math], законченные позже, чем [math] d_j \geqslant \ldots \geqslant d_1 [/math], будут выполнены с опозданием. Отсюда, получим соотношение:

[math] F_j(t) = \left \{\begin{array}{ll} \min(F_{j-1}(t-p_j), F_{j-1}(t) + w_j), & 0 \leqslant t \leqslant d_j \\ F_j(d_j), & d_j \lt t \lt T \end{array} \right. [/math]

При этом, [math]F_j(t) = \infty [/math] при [math]t \lt 0, j = 0,\ldots, n [/math] и [math]F_0(t) = 0 [/math] при [math]t \geqslant 0 [/math].


 отсортиртировать работы по неубыванию времен дедлайнов [math]d_i[/math]
 [math]t_1[/math] = [math]r_1[/math]
 for [math]t = -p_{max}[/math] to [math]-1[/math]
   for [math]j = 0[/math] to [math]n[/math]
     F_j(t) = \infty
 for [math]t = 0[/math] to [math]T[/math]
   F_0(t) = 0
 for [math]j = 1[/math] to [math]n[/math]
   for [math]t = 0[/math] to [math]d_j[/math]
     if [math] F_{j-1}(t) + w_j  \lt  F_{j-1}(t-p_j) [/math]   
        [math] F_j(t) = F_{j-1}(t) + w_j [/math]
     else
       [math]  F_j(t) = F_{j-1}(t-p_j) [/math]
   for [math]t = d_j + 1[/math] to [math]T[/math]
     [math] F_j(t) = F_{j}(d_j) [/math]


 t = d_n
 L = \varnothing
 for [math]j = n[/math] downto [math]1[/math]
   [math]t = \min(t, d_j)[/math]
   if [math] F_j(t) = F_{j-1}(t) + w_j [/math] 
     [math] L = L \cup \{j\} [/math] </tex>
   else
     [math] t = t - p_j [/math]

Доказательство корректности и оптимальности

Лемма:
Пусть все работы отсортированы в порядке неубывания дедлайнов [math]d_i[/math]. Тогда существует оптимальное расписание вида [math]i_1, i_2, \ldots, i_s, i_{s+1}, \ldots, i_n [/math], такое, что [math]i_1 \lt i_2 \lt \ldots \lt i_s [/math] — номера работ, которые успеют выполниться вовремя, а [math]i_{s+1}, \ldots, i_n [/math] — номера просроченных работ.
Доказательство:
[math]\triangleright[/math]

Пусть у нас есть некоторое оптимальное раписание [math]S[/math]. Получим необходимое нам расписание путем переставления некоторых работ.

  1. Если работа с номером [math] i[/math] выполнится в [math]S[/math] с опозданием, то переставим эту работу в конец. При этом, так как работа просрочна в оптимальном расписании [math]S[/math], при такой перестановке не произойдет увеличения целевой функции.
  2. Если работы с номерами [math]i[/math] и [math]j[/math] в расписании [math]S[/math] выполняются вовремя, но при этом [math]d_i \lt d_j [/math], но [math]j[/math] стоит в [math]S[/math] раньше [math]i[/math]. Тогда переставим работу с номером [math]j[/math] так, чтобы она выполнялась после работы [math]i[/math]. Таким образом, каждая из работ, находившихся в [math]S[/math] между [math]j[/math] и [math]i[/math], включая [math]i[/math], будет выполняться в новом расписании на [math]p_j[/math] единиц времени раньше. Эта перестановка не повлияет на оптимальнось расписания:
    • Ни одна из работ, котарая успевала выполниться в расписании [math]S[/math], не попадет в список просроченных работ при переставлении её на более раннее время.
    • Число работ, не успевающих выполниться вовремя, не может уменьшится, иначе бы возникло противоречие в исходным выбором [math]S[/math], как оптимального решения.
    • Поскольку [math]d_i \lt d_j [/math] и работа [math]i[/math] будет заканчиваться на [math]p_j[/math] единиц времени раньше, то стоящая сразу послее нее работа [math]j[/math] тоже будет успевать выполниться.
[math]\triangleleft[/math]

См. также

Источники информации

  • P. Brucker. Scheduling Algorithms (2006), 5th edition, стр. 26 - 28