1rjpjpsumwjcjиsumtj — различия между версиями
Romanosov (обсуждение | вклад) м |
Romanosov (обсуждение | вклад) м |
||
Строка 3: | Строка 3: | ||
{{Задача | {{Задача | ||
|definition= | |definition= | ||
− | Дано n работ и 1 станок. Для каждой работы известны время появления r_i, вес w_i и дедлайн d_i. Время выполнения всех работ p_i равно p. Требуется выполнить все работы так, чтобы значение sum | + | Дано <tex>n</tex> работ и <tex>1</tex> станок. Для каждой работы известны время появления <tex>r_i</tex>, вес <tex>w_i</tex> и дедлайн <tex>d_i</tex>. Время выполнения всех работ <tex>p_i</tex> равно <tex>p</tex>. Требуется выполнить все работы так, чтобы значение <tex>\sum{w_iC_i}</tex>, где <tex>C_i</tex> — время окончания работы, было минимальным. |
}} | }} | ||
Строка 10: | Строка 10: | ||
{{Задача | {{Задача | ||
|definition= | |definition= | ||
− | Дано n работ и 1 станок. Для каждой работы известны время появления r_i, вес w_i. Время выполнения всех работ p_i равно p. Требуется выполнить все работы так, чтобы значение sum | + | Дано <tex>n</tex> работ и <tex>1</tex> станок. Для каждой работы известны время появления <tex>r_i</tex>, вес <tex>w_i</tex> и дедлайн <tex>d_i</tex>. Время выполнения всех работ <tex>p_i</tex> равно <tex>p</tex>. Требуется выполнить все работы так, чтобы значение <tex>\sum{T_i}</tex> — суммарной медлительности работы (<tex>T_i = \max(C_i - d_i, 0)</tex>) — было минимальным. |
}} | }} | ||
Версия 23:36, 6 июня 2016
Задача: |
Дано | работ и станок. Для каждой работы известны время появления , вес и дедлайн . Время выполнения всех работ равно . Требуется выполнить все работы так, чтобы значение , где — время окончания работы, было минимальным.
Задача: |
Дано | работ и станок. Для каждой работы известны время появления , вес и дедлайн . Время выполнения всех работ равно . Требуется выполнить все работы так, чтобы значение — суммарной медлительности работы ( ) — было минимальным.
Содержание
Предисловие
Аналогично задаче , данные задачи решаются при помощи динамического программирования.
Вместо критериев оптимизации
и возьмём более общую для них функцию вида , где функции обладают следующими свойствами:- не убывает для всех ;
- не убывает для всех при .
Функции
и удовлетворяют данным условиям, если отсортировать работы так, что и .Алгоритм
Отсортировать работы так, чтобыудовлетворяла условиям неубывания; for s, e T : s e (s, e) = 0; for k = 1..n for s, e T : s e if else , где return