Метод четырёх русских для умножения матриц — различия между версиями
Komarov (обсуждение | вклад) (→Оценка трудоёмкости и выбор k) |
Komarov (обсуждение | вклад) м (minor fixes) |
||
Строка 2: | Строка 2: | ||
Рассмотрим следующую задачу: «Дано две квадратных матрицы <tex>A_{[n \times n]}</tex> и <tex>B_{[n \times n]}</tex>, | Рассмотрим следующую задачу: «Дано две квадратных матрицы <tex>A_{[n \times n]}</tex> и <tex>B_{[n \times n]}</tex>, | ||
− | + | состоящие из нулей и единиц. Нужно найти их произведение. При этом, все операции выполняются по модулю <tex>2</tex>.» | |
== Простое решение == | == Простое решение == | ||
Строка 8: | Строка 8: | ||
Если мы будем считать произведение матриц <tex>C = A \cdot B</tex> по определению(<tex dpi=140>c_{i, j} = \sum\limits_{k = 1}^n a_{i,k}b_{k,j}</tex>), то трудоёмкость алгоритма составит <tex>O(n^3)</tex> {{---}} каждый из <tex>n^2</tex> элементов результирующей матрицы <tex>C</tex> вычисляется за время, пропорциональное <tex>n</tex>. | Если мы будем считать произведение матриц <tex>C = A \cdot B</tex> по определению(<tex dpi=140>c_{i, j} = \sum\limits_{k = 1}^n a_{i,k}b_{k,j}</tex>), то трудоёмкость алгоритма составит <tex>O(n^3)</tex> {{---}} каждый из <tex>n^2</tex> элементов результирующей матрицы <tex>C</tex> вычисляется за время, пропорциональное <tex>n</tex>. | ||
− | + | Сейчас будет показано, как немного уменьшить это время. | |
== Предподсчёт == | == Предподсчёт == | ||
− | Воспользуемся следующим | + | Воспользуемся следующим приёмом. Возьмём некоторое целое число <tex>k</tex>. Для всех возможных пар двоичных векторов длины <tex>k</tex> подсчитаем и запомним их скалярное произведение по модулю <tex>2</tex>. |
== Сжатие матриц == | == Сжатие матриц == | ||
− | + | Воспользуемся полученным в предыдущем пункте результатом. | |
− | Возьмём первую матрицу. разделим каждую её строку на куски размера <tex>k</tex>. | + | Возьмём первую матрицу. разделим каждую её строку на куски размера <tex>k</tex>. Для каждого куска определим номер двоичного вектора, который соответствует числам, находящимся на этом куске. Если кусок получился неравным по длине <tex>k</tex>(последний кусок строки), то будем считать, что в конце в нём идут не влияющие на умножение нули. Получим матрицу <tex dpi=140>A'_{n \times \lceil\frac{n}{k} \rceil}</tex>. |
Аналогично поступим с матрицей <tex>B</tex>, вместо строк деля столбцы. Получим матрицу <tex dpi=140>B'_{\lceil\frac nk\rceil\times n}</tex>. | Аналогично поступим с матрицей <tex>B</tex>, вместо строк деля столбцы. Получим матрицу <tex dpi=140>B'_{\lceil\frac nk\rceil\times n}</tex>. | ||
− | Теперь, если вместо произведения матриц <tex>A</tex> и <tex>B</tex> считать произведение новых матриц <tex>A'</tex> и <tex>B'</tex>, воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы <tex>C</tex> будет получаться уже за время, пропорциональное <tex>\lceil \frac nk \rceil</tex> вместо <tex>n</tex>, и время произведения матриц сократится с <tex>O(n^3)</tex> до <tex>O(n^2 \cdot\frac nk) = O(\frac{n^3}{k}) </tex>. | + | Теперь, если вместо произведения матриц <tex>A</tex> и <tex>B</tex> считать произведение новых матриц <tex>A'</tex> и <tex>B'</tex>, воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы <tex>C</tex> будет получаться уже за время, пропорциональное <tex>\lceil \frac nk \rceil</tex> вместо <tex>n</tex>, и время произведения матриц сократится с <tex>O(n^3)</tex> до <tex dpi=140>O(n^2 \cdot\frac nk) = O(\frac{n^3}{k}) </tex>. |
== Оценка трудоёмкости и выбор k == | == Оценка трудоёмкости и выбор k == | ||
Строка 34: | Строка 34: | ||
Итого: <tex>O(2^{2k}k) + O(\frac{n^3}{k})</tex>. | Итого: <tex>O(2^{2k}k) + O(\frac{n^3}{k})</tex>. | ||
− | Взяв <tex>k = \log n</tex>, получаем итоговую трудоёмкость <tex>O(n^2 \log n) + O(\frac{n^3}{\log n}) = O(\frac{n^3}{\log n})</tex> | + | Взяв <tex>k = \log n</tex>, получаем итоговую трудоёмкость <tex dpi=140>O(n^2 \log n) + O(\frac{n^3}{\log n}) = O(\frac{n^3}{\log n})</tex> |
Версия 05:11, 9 декабря 2010
Содержание
Постановка задачи
Рассмотрим следующую задачу: «Дано две квадратных матрицы
и , состоящие из нулей и единиц. Нужно найти их произведение. При этом, все операции выполняются по модулю .»Простое решение
Если мы будем считать произведение матриц
по определению( ), то трудоёмкость алгоритма составит — каждый из элементов результирующей матрицы вычисляется за время, пропорциональное .Сейчас будет показано, как немного уменьшить это время.
Предподсчёт
Воспользуемся следующим приёмом. Возьмём некоторое целое число
. Для всех возможных пар двоичных векторов длины подсчитаем и запомним их скалярное произведение по модулю .Сжатие матриц
Воспользуемся полученным в предыдущем пункте результатом.
Возьмём первую матрицу. разделим каждую её строку на куски размера
. Для каждого куска определим номер двоичного вектора, который соответствует числам, находящимся на этом куске. Если кусок получился неравным по длине (последний кусок строки), то будем считать, что в конце в нём идут не влияющие на умножение нули. Получим матрицу .Аналогично поступим с матрицей
, вместо строк деля столбцы. Получим матрицу .Теперь, если вместо произведения матриц
и считать произведение новых матриц и , воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы будет получаться уже за время, пропорциональное вместо , и время произведения матриц сократится с до .Оценка трудоёмкости и выбор k
Оценим трудоёмкость данного алгоритма.
- Предподсчёт скалярных произведений работает за .
- Создание матриц и —
- Перемножение полученных матриц —
Итого:
.Взяв
, получаем итоговую трудоёмкость