Иммунные и простые множества — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 42: Строка 42:
 
|statement=Для любого бесконечного перечислимого множества <tex>B</tex> верно, что <tex>B \not \subset \overline{E(q)}</tex>.
 
|statement=Для любого бесконечного перечислимого множества <tex>B</tex> верно, что <tex>B \not \subset \overline{E(q)}</tex>.
 
|proof=
 
|proof=
[[#lemma1 (1)|По первой лемме]] существует элемент <tex>B</tex>, принадлежащий <tex>E(q)</tex>, и, следовательно, не принадлежащий <tex>\overline{E(q)}</tex>.
+
[[#lemma (1)|По первой лемме]] существует элемент <tex>B</tex>, принадлежащий <tex>E(q)</tex>, и, следовательно, не принадлежащий <tex>\overline{E(q)}</tex>.
 
}}
 
}}
  

Версия 23:50, 27 октября 2016

Определение:
Множество натуральных чисел [math]A[/math] называется иммунным (англ. immune set ), если оно бесконечно и не содержит бесконечных перечислимых подмножеств.


Определение:
Множество натуральных чисел [math]A[/math] называется простым (англ. simple set ), если [math]A[/math] — перечислимое, бесконечное и дополнение [math]A[/math] — иммунное.


Теорема:
Существует простое множество.
Доказательство:
[math]\triangleright[/math]

Рассмотрим все программы. Для некоторого перечислимого языка какая-то из них является его перечислителем. Рассмотрим программу [math]q[/math]:

[math]q[/math]:
 for [math](TL = 1\ \ldots +\infty)[/math]
  for [math](i = 1\ \ldots TL)[/math]
   запустить [math]i[/math]-ую в главной нумерации программу на [math]TL[/math] шагов
   напечатать первый [math]x[/math], который вывела эта программа, такой что [math]x \geqslant 2 i[/math]


Обозначим [math]E(q)[/math] — множество, которое перечисляет эта программа.

Докажем несколько лемм, из которых будет очевидна правильность утверждения теоремы.

Необходимо, чтобы перечислимое множество [math]E(q)[/math] имело иммунное дополнение. Это означает, что [math]E(q)[/math] должно пересекаться с любым бесконечным перечислимым множеством.


Лемма (1):
Для любого бесконечного перечислимого множества [math]B[/math] существует его элемент, принадлежащий [math]E(q)[/math].
Доказательство:
[math]\triangleright[/math]
По построению, для любого множества [math] B [/math] в [math]E(q)[/math] будет содержаться первый его элемент не меньший [math]2 i[/math], где [math]i[/math] — номер перечислителя множества [math]B[/math].
[math]\triangleleft[/math]
Лемма (2):
Для любого бесконечного перечислимого множества [math]B[/math] верно, что [math]B \not \subset \overline{E(q)}[/math].
Доказательство:
[math]\triangleright[/math]
По первой лемме существует элемент [math]B[/math], принадлежащий [math]E(q)[/math], и, следовательно, не принадлежащий [math]\overline{E(q)}[/math].
[math]\triangleleft[/math]
Лемма (3):
[math]\overline{E(q)}[/math] — бесконечно.
Доказательство:
[math]\triangleright[/math]

Среди чисел от [math]1[/math] до [math]k[/math] множеству [math]E(q)[/math] принадлежат не более [math]\frac{k}{2}[/math].

Следовательно [math]\overline{E(q)}[/math] принадлежат не менее [math]\frac{k}{2}[/math]
[math]\triangleleft[/math]


Вернемся к доказательству теоремы.

Получаем:

Из леммы (2) и из леммы (3) следует, что [math]\overline{E(q)}[/math] — иммунно.

По построению [math]E(q)[/math] перечислимо, его дополнение иммунно и, по лемме (3), бесконечно, а значит — оно простое.
[math]\triangleleft[/math]

Простые множества являются примерами перечислимых множеств, не являющихся m-полными. Именно так и возникло понятие простого множества: Пост (англ. Post ) искал пример перечислимого неразрешимого множества, которое не было бы m-полным.

Литература

  • Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. С. 134. ISBN 5-900916-36-7
  • Роджерс Х. Теория рекурсивных функций и эффективная вычислимость. — М.:Мир, 1972. С. 141-143.
  • Wikipedia — Simple set