Изменения

Перейти к: навигация, поиск

Универсальная функция

174 байта добавлено, 15:38, 1 ноября 2016
Нет описания правки
не определённая функция имела единственный номер. Пусть <tex>U(n,x)</tex>- произвольная вычислимая универсальная функция.
Теперь возьмем перечислимое множество <tex>D</tex> всех <tex>U</tex>-номеров всех функций таких, что их область определения непуста. Пусть функция <tex>d</tex> есть всюду определенная функция перечисляющая множество <tex>D</tex>. Рассмотрим функцию <tex>V(i, x)</tex>, для которой <tex>V(0, x)</tex> не определено ни при каком <tex>x</tex>, а <tex>V(i+1, x) = U(d(i), x)</tex>. То есть, функция <tex>V_0</tex> нигде не определена, а функция <tex>V_{i+1}</tex> совпадает с <tex>U_{d(i)}</tex>. Очевидно, функция <tex>V</tex> вычислима и универсальна (по построению), а единственным <tex>V</tex>-номером нигде не определённой функции является число <tex>0</tex>. Тогда нумерация, соответствующая этой функции является неглавной.
b z== См. также ==* [[Неотделимые множества]]* [[Свойства перечислимых языков. Теорема Успенского-Райса]] 
== Источники информации ==
* [http://www.mccme.ru/free-books/shen/shen-logic-part3-2.pdf ''Н. К. Верещагин, А. Шень.'' '''Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции.''' — М.: МЦНМО, 1999, с. 16. ISBN 5-900916-36-7 ]
Анонимный участник

Навигация