Гиперграфы — различия между версиями
м (Start) |
Ivan (обсуждение | вклад) (sta) |
||
Строка 1: | Строка 1: | ||
− | ''' | + | В математике '''гиперграф''' - это обобщение графа, у которого ребра могут соединять любое количество вершин. Более формально, гиперграф <tex>H</tex> - это пара <tex>(X, E)</tex> , где <tex>X</tex> - множество элементов называемых узлами или вершинами, и <tex>E</tex> - не пустое подмножество <tex>X</tex> называемых гиперребрами или просто ребрами. |
− | В | + | В то время, как ребра графа соединяют две пары вершин, гиперребра - произвольные множества вершин, которые могут содержать любое количество вершин. Однако, очень часто рассматривают гиперграфы с гиперребрами одинаковой мощности ; <tex>k</tex> - равномерный гиперграф - это такой гиперграф, у которого все гиперребра имеют размер k. (Другими словами, такой гиперграф множество подмножеств, которые содержат k вершин). Так например, <tex>2</tex> - равномерный гиперграф - обычный граф. |
− | |||
− | |||
− | |||
− | |||
[[Файл:Hypergraph.jpg|right|thumb|Частный случай гипергафа, где <tex>E=\{e_1, e_2, e_3, e_4\} = \{\{v_1, v_2, v_3\}, \{v_2,v_3\}, \{v_3,v_5.v_6\}, \{v_4\}\}</tex>]] | [[Файл:Hypergraph.jpg|right|thumb|Частный случай гипергафа, где <tex>E=\{e_1, e_2, e_3, e_4\} = \{\{v_1, v_2, v_3\}, \{v_2,v_3\}, \{v_3,v_5.v_6\}, \{v_4\}\}</tex>]] | ||
Строка 12: | Строка 8: | ||
==Определения== | ==Определения== | ||
− | ''' | + | Так как множество гиперребер может быть любой мощности, существуют несколько понятий '''подграфа''' гиперграфа, называемых '''подгиперграфами''', '''частичные гиперграфы''' и '''разрез гиперграфов'''. Пусть <tex>H = (X, E) </tex> - гиперграф содержащий множество вершин <tex>X = \{x_i | i \in I_v\}</tex> и множество ребер <tex>E = \{e_i | i \in I_e, e_i \subseteq X\}</tex>, где <tex>I_v</tex> и <tex>I_e</tex> множества индексов вершин и ребер соответсвенно.
|
+ | |||
+ | '''Подгиперграфом''' называют гиперграф с некоторым множеством удаленных вершин. Формально, подгиперграф <tex>H_a</tex> , индуцированный подмножеством <tex>A</tex> множества <tex> X </tex>, который определен как
<tex>H_a = (A, \{e_i \cap A| e_i \cap A \neq \emptyset \}).</tex> | ||
+ | |||
+ | '''Частичным''' гипергафом называется гиперграф, с множеством удаленных ребер. Данное подмножество <tex>J \subset I_e </tex> множества индексов ребер, частичный граф сгенерирован с помощью <tex>J</tex>, т.е <tex>(X, \{ e_i | i \in J \}).</tex> | ||
+ | |||
+ | Пусть дано множество <tex>A \subseteq X</tex>, разрезом гиперграфа называют такой '''частичный''' гиперграф <tex>
H \times A = (A, \{e_i | i \in I_e, e_i \subseteq A \}).</tex> | ||
+ | |||
+ | '''Двойственным''' гиперграфом <tex>H</tex>* к <tex>H</tex> называют такой гиперграф, в котором поменяны местами вершины и ребра таким образом, что вершины определяются как <tex>\{e_i\}</tex> и ребра определяются как <tex>\{X_m\}</tex>, где <tex>X_m = \{ e_i | x_m \in e_i \}.</tex> | ||
+ | |||
+ | Когда операция равенства определена, как показано ниже, операция взятия '''двойственного''' гиперграфа выглядит следующим образом
<tex>(H*)* = H.</tex> | ||
− | + | Связный граф <tex>G</tex> с тем же множеством вершин, что и у связного гиперграфа <tex>H</tex> называется «принимающим» графом для <tex>H</tex>, если каждое гиперребро <tex>H</tex> включает связный подграф в <tex>G</tex>. Для несвязного гиперграфа <tex>H</tex> , <tex>G</tex> является «принимающим», если существует биекция между связными компонентами <tex>G</tex> и <tex>H</tex> , так что каждая связная компонента <tex>G</tex>' графа <tex>G</tex> является принимающей для соответствующего <tex>H</tex>'. | |
− | |||
− | == | + | ==Изоморфность и эквивалентсность== |
− | + | Гиперграф <tex>H = (X, E)</tex> изоморфен гиперграфу <tex>G = (Y, F)</tex> , если существует биекция <tex>w</tex> : <tex>X</tex> -> <tex>Y</tex>
и перестановка <tex>\pi</tex> множества <tex>I</tex> такая, что <tex>w</tex><tex>(e_i)</tex> = <tex>f_\pi(i)</tex> | |
+ | Тогда биекция <tex>w</tex> называется изоморфизмом гиперграфов. Стоит отметить, что | ||
+ | <tex>H \equiv G</tex> тогда и только тогда, когда <tex>H* \simeq G</tex>* |
Версия 23:54, 12 декабря 2016
В математике гиперграф - это обобщение графа, у которого ребра могут соединять любое количество вершин. Более формально, гиперграф
- это пара , где - множество элементов называемых узлами или вершинами, и - не пустое подмножество называемых гиперребрами или просто ребрами.В то время, как ребра графа соединяют две пары вершин, гиперребра - произвольные множества вершин, которые могут содержать любое количество вершин. Однако, очень часто рассматривают гиперграфы с гиперребрами одинаковой мощности ;
- равномерный гиперграф - это такой гиперграф, у которого все гиперребра имеют размер k. (Другими словами, такой гиперграф множество подмножеств, которые содержат k вершин). Так например, - равномерный гиперграф - обычный граф.Стоит заметить, что обычный граф является частным случаем гиперграфа, где каждое ребро имеет мощность
.Определения
Так как множество гиперребер может быть любой мощности, существуют несколько понятий подграфа гиперграфа, называемых подгиперграфами, частичные гиперграфы и разрез гиперграфов. Пусть
- гиперграф содержащий множество вершин и множество ребер , где и множества индексов вершин и ребер соответсвенно.Подгиперграфом называют гиперграф с некоторым множеством удаленных вершин. Формально, подгиперграф
, индуцированный подмножеством множества , который определен какЧастичным гипергафом называется гиперграф, с множеством удаленных ребер. Данное подмножество
множества индексов ребер, частичный граф сгенерирован с помощью , т.еПусть дано множество
, разрезом гиперграфа называют такой частичный гиперграфДвойственным гиперграфом
* к называют такой гиперграф, в котором поменяны местами вершины и ребра таким образом, что вершины определяются как и ребра определяются как , гдеКогда операция равенства определена, как показано ниже, операция взятия двойственного гиперграфа выглядит следующим образом
Связный граф
с тем же множеством вершин, что и у связного гиперграфа называется «принимающим» графом для , если каждое гиперребро включает связный подграф в . Для несвязного гиперграфа , является «принимающим», если существует биекция между связными компонентами и , так что каждая связная компонента ' графа является принимающей для соответствующего '.
Изоморфность и эквивалентсность
Гиперграф
изоморфен гиперграфу , если существует биекция : -> и перестановка множества такая, что = Тогда биекция называется изоморфизмом гиперграфов. Стоит отметить, что тогда и только тогда, когда *