Пересечение полуплоскостей, связь с выпуклыми оболочками — различия между версиями
(→Связь пересечения полуплоскостей с выпуклой оболочкой) |
(→Связь пересечения полуплоскостей с выпуклой оболочкой) |
||
Строка 89: | Строка 89: | ||
Пусть у нас есть множество ориентированных прямых, каждая из которых задает полуплоскость(направление вектора нормали задаёт нужную полуплоскость). | Пусть у нас есть множество ориентированных прямых, каждая из которых задает полуплоскость(направление вектора нормали задаёт нужную полуплоскость). | ||
Тогда каждую плоскость мы можем превратить в точку в двойственном пространстве: <tex> P(p_x, p_y) \Rightarrow P^\star (p_x x - p_y)</tex>. | Тогда каждую плоскость мы можем превратить в точку в двойственном пространстве: <tex> P(p_x, p_y) \Rightarrow P^\star (p_x x - p_y)</tex>. | ||
− | + | ||
Далее воспользуемся основными свойствами дуальной трансформации (см. доказательтсво в конспекте о [[двойственное пространство|двойственном прострастве]]): | Далее воспользуемся основными свойствами дуальной трансформации (см. доказательтсво в конспекте о [[двойственное пространство|двойственном прострастве]]): | ||
#<tex>p</tex> <tex>\in</tex> <tex>l</tex> <tex>\Leftrightarrow</tex> <tex>l^\star</tex> <tex>\in</tex> <tex>p^\star</tex>, где <tex>p</tex> - точка в исходном пространстве, <tex>l</tex> - прямая в исходном пространстве, <tex>l^\star</tex>, <tex>p^\star</tex> - их дуальное отображение. | #<tex>p</tex> <tex>\in</tex> <tex>l</tex> <tex>\Leftrightarrow</tex> <tex>l^\star</tex> <tex>\in</tex> <tex>p^\star</tex>, где <tex>p</tex> - точка в исходном пространстве, <tex>l</tex> - прямая в исходном пространстве, <tex>l^\star</tex>, <tex>p^\star</tex> - их дуальное отображение. | ||
#<tex>p</tex> лежит "над" <tex>l</tex> <tex>\Leftrightarrow</tex> <tex>l^\star</tex> лежит "над" <tex>p^\star</tex> | #<tex>p</tex> лежит "над" <tex>l</tex> <tex>\Leftrightarrow</tex> <tex>l^\star</tex> лежит "над" <tex>p^\star</tex> | ||
− | Рассмотрим множество точек(<tex>P^\star</tex>) в двойственном пространстве и рассмотрим верхнюю часть выпуклой оболочки, построенной на этих точках. Обозначим её за <tex>\mathcal{UH}</tex>(Upper hull). | + | Рассмотрим множество точек(<tex>P^\star</tex>) в двойственном пространстве и рассмотрим верхнюю часть выпуклой оболочки, построенной на этих точках. Обозначим её за <tex>\mathcal{UH}</tex>(Upper hull). Далее мы будем работать только с прямыми(в исходном пространстве), у которых вектор нормали направлен вниз, т.е они образовывают верхнюю цепочку. |
По свойству выпуклой оболочки, любое ребро из цепи <tex>\mathcal{UH}</tex> содержит "ниже" себя все точки множества <tex>P^\star</tex>, а так же эта цепь соединяет самую правую точку с самой левой. | По свойству выпуклой оболочки, любое ребро из цепи <tex>\mathcal{UH}</tex> содержит "ниже" себя все точки множества <tex>P^\star</tex>, а так же эта цепь соединяет самую правую точку с самой левой. | ||
Строка 104: | Строка 104: | ||
Итого: у нас есть точка <tex>l</tex> на прямой <tex>p</tex>, лежащая ниже всех остальных прямых из <tex>P</tex>. | Итого: у нас есть точка <tex>l</tex> на прямой <tex>p</tex>, лежащая ниже всех остальных прямых из <tex>P</tex>. | ||
− | + | Посмотрим на планарный граф множества(рис.2) прямых. Из факта выше, мы можем понять, что <tex>p</tex> внесла ребро в самый нижний фейс(именно тот, который задаёт часть пересечения полуплоскостей). Обозначим цепочку данного фейса, как <tex>\mathcal{LE}</tex>. Математически данную цепочку мы можем описать, как минимум из всех линейных функция (заданные прямыми) в <tex>P</tex>. Так же <tex>X</tex> компонента узлов этой цепочки монотонно возрастает. | |
Вернемся к <tex>\mathcal{UH}</tex> и заметим, что при обходе цепи, координата <tex>X</tex> точек растет. Если же мы будет обходить цепочку из <tex>P</tex>, образующую пересечение полуплоскостей, мы заметим, что наклон прямых уменьшается. Учитывая этот факт, и то что наклон линии из <tex>\mathcal{LE}</tex> совпадет с <tex>X</tex> координатой точки (вспоминаем отображение и применяем производную), можно сделать вывод, что обход слева направо точек из цепи <tex>\mathcal{UH}</tex>, совпадает с обходом точек из <tex>\mathcal{LE}</tex> справа налево. | Вернемся к <tex>\mathcal{UH}</tex> и заметим, что при обходе цепи, координата <tex>X</tex> точек растет. Если же мы будет обходить цепочку из <tex>P</tex>, образующую пересечение полуплоскостей, мы заметим, что наклон прямых уменьшается. Учитывая этот факт, и то что наклон линии из <tex>\mathcal{LE}</tex> совпадет с <tex>X</tex> координатой точки (вспоминаем отображение и применяем производную), можно сделать вывод, что обход слева направо точек из цепи <tex>\mathcal{UH}</tex>, совпадает с обходом точек из <tex>\mathcal{LE}</tex> справа налево. | ||
(Обе линии монотоны, одна возрастает, другая убывает. Количество точек в массиве одинаковое, при это каждая точка из <tex>\mathcal{UH}</tex> внесла вклад в <tex>\mathcal{LE}</tex>) | (Обе линии монотоны, одна возрастает, другая убывает. Количество точек в массиве одинаковое, при это каждая точка из <tex>\mathcal{UH}</tex> внесла вклад в <tex>\mathcal{LE}</tex>) | ||
+ | |||
+ | Напоследок, cоседние точки <tex>p^\star</tex> и <tex>q^\star</tex> из <tex>P^\star</tex> образуют какое-то или принадлежат какому-то ребру <tex>\mathcal{UH}</tex> <tex>Leftrightarrow</tex> | ||
+ | все точки из <tex>P^\star</tex> лежат "ниже" линии, построенной на точках <tex>p^\star</tex> и <tex>q^\star</tex>. В исходном пространстве это означает: все прямые из пространства <tex>P</tex> за исключением прямых <tex>p</tex> и <tex>q</tex> лежат над пересечением <tex>p</tex> и <tex>q</tex>. Это достаточное условие, что пересечение <tex>p</tex> и <tex>q</tex> <tex>\in</tex> <tex>\mathcal{LE}</tex>. | ||
}} | }} | ||
Версия 23:29, 11 декабря 2016
Задача: есть конечное множество полуплоскостей, найти фигуру их пересечения или сообщить что оно пусто.
Для начала заметим, что если пересечение не пусто, то оно выпукло. (Доказательство — Пересечение выпуклых фигур выпукло, а полуплоскость выпукла)
Пусть полуплоскости заданы уравнениями прямых и ориентацией, с какой стороны от прямой лежит полуплоскость.
Сначала рассмотрим все полуплоскости, которые "смотрят", то есть ориентированны, вниз. Аналогично можно рассмотреть все полуплоскости, которые ориентированны вверх.
Лемма: |
Доказательство: |
Для проверки предиката нужно определить знак выражения , где — точка пересечения прямых и . Эта точка находится из уравнения . Решением будет . Подставим это решение в и домножим на определитель. |
Таким образом, если представить прямую обходе Грэхема для нахождения выпуклой оболочки.
как точку с однородными координатами , то этот предикат — всего лишь поворот, а проверка предиката — проверка очередной точки вАлгоритм:
- Отсортировать все полуплоскости по углу наклона;
- Запустить обход Грэхема для полуплоскостей, смотрящих вниз (с предикатом-определителем);
- Запустить обход Грэхема для полуплоскостей, смотрящих вверх;
- Пересечь две цепочки.
От пересечения цепочек напрямую зависит фигура пересечения: неограниченная область получается если одна из цепочек пуста, а ограниченная — когда обе цепочки не пусты и пересекаются.
Связь пересечения полуплоскостей с выпуклой оболочкой
Лемма: |
Пересечение полуплоскостей может быть получено построением выпуклой оболочки в двойственном прострастве для множества точек, являющихся дуальным преобразованием исходных полуплоскостей |
Доказательство: |
Важно: Покажем конструктивный алгоритм для множестве полуплоскостей, не содержащих вертикальный полуплоскости. После леммы приведены два рассуждения, позволяющие снять данное ограничение. Важно2: В картинке перепутаны и . TODOРассмотрим планарный случай и предположим, что вертикальные и параллельные прямые отсутствуют (в конце приведем два способа решения данной проблемы). Пусть у нас есть множество ориентированных прямых, каждая из которых задает полуплоскость(направление вектора нормали задаёт нужную полуплоскость). Тогда каждую плоскость мы можем превратить в точку в двойственном пространстве: .Далее воспользуемся основными свойствами дуальной трансформации (см. доказательтсво в конспекте о двойственном прострастве):
Рассмотрим множество точек( ) в двойственном пространстве и рассмотрим верхнюю часть выпуклой оболочки, построенной на этих точках. Обозначим её за (Upper hull). Далее мы будем работать только с прямыми(в исходном пространстве), у которых вектор нормали направлен вниз, т.е они образовывают верхнюю цепочку. По свойству выпуклой оболочки, любое ребро из цепи содержит "ниже" себя все точки множества , а так же эта цепь соединяет самую правую точку с самой левой.Рассмотрим какую-то точку и заметим, что она будет принадлежать цепи прямая : и все точки из лежат ниже (сейчаc мы жили в двойственном пространстве). В обычном пространстве данный факт эквивалентен следующему:
Итого: у нас есть точка на прямой , лежащая ниже всех остальных прямых из .Посмотрим на планарный граф множества(рис.2) прямых. Из факта выше, мы можем понять, что внесла ребро в самый нижний фейс(именно тот, который задаёт часть пересечения полуплоскостей). Обозначим цепочку данного фейса, как . Математически данную цепочку мы можем описать, как минимум из всех линейных функция (заданные прямыми) в . Так же компонента узлов этой цепочки монотонно возрастает.Вернемся к и заметим, что при обходе цепи, координата точек растет. Если же мы будет обходить цепочку из , образующую пересечение полуплоскостей, мы заметим, что наклон прямых уменьшается. Учитывая этот факт, и то что наклон линии из совпадет с координатой точки (вспоминаем отображение и применяем производную), можно сделать вывод, что обход слева направо точек из цепи , совпадает с обходом точек из справа налево.(Обе линии монотоны, одна возрастает, другая убывает. Количество точек в массиве одинаковое, при это каждая точка из внесла вклад в )Напоследок, cоседние точки все точки из и из образуют какое-то или принадлежат какому-то ребру лежат "ниже" линии, построенной на точках и . В исходном пространстве это означает: все прямые из пространства за исключением прямых и лежат над пересечением и . Это достаточное условие, что пересечение и . |