Группы графов — различия между версиями
Ashkroft (обсуждение | вклад) |
Ashkroft (обсуждение | вклад) |
||
Строка 64: | Строка 64: | ||
− | Таким образом, группа <tex>C_3 + S_2</tex> содержит <tex>6</tex> подстановок, каждую из которых можно записать в виде суммы подстановок <tex>\alpha \in C_3</tex> и <tex>\beta\in S_2</tex>, как, например, <tex>(123)(ab)=(123)+(ab)</tex>. | + | Таким образом, группа <tex>C_3 + S_2</tex> содержит <tex>6</tex> подстановок, каждую из которых можно записать в виде суммы подстановок <tex>\alpha \in C_3</tex> и <tex>\beta\in S_2</tex>, как, например, <tex>(123)(ab)=(123)+(ab)</tex>. (степень равна <tex>5</tex>.) |
===Произведение групп=== | ===Произведение групп=== | ||
<tex>A \times B </tex> {{---}} это группа подстановок, действующая на множестве <tex>X\times Y</tex>, элементы которой записываются в виде <tex>\alpha\times\beta</tex> и представляют собой упорядоченные пары подстановок <tex>\alpha</tex> из <tex>A</tex> и <tex>\beta</tex> из <tex>B</tex>. Элемент <tex>(x,y)</tex> множества <tex>X\times Y</tex> преобразуется подстановкой <tex>\alpha\times\beta</tex> естественным образом: | <tex>A \times B </tex> {{---}} это группа подстановок, действующая на множестве <tex>X\times Y</tex>, элементы которой записываются в виде <tex>\alpha\times\beta</tex> и представляют собой упорядоченные пары подстановок <tex>\alpha</tex> из <tex>A</tex> и <tex>\beta</tex> из <tex>B</tex>. Элемент <tex>(x,y)</tex> множества <tex>X\times Y</tex> преобразуется подстановкой <tex>\alpha\times\beta</tex> естественным образом: | ||
+ | |||
<tex>(\alpha\times\beta)(x,y)=(\alpha x,\beta y)</tex> | <tex>(\alpha\times\beta)(x,y)=(\alpha x,\beta y)</tex> | ||
− | Подстановкой в группе <tex>C_3\times S_2</tex>, которая соответствует подстановке <tex>(123)+(ab)</tex> будет <tex>(1a\ 2b\ 3a\ 1b\ 2a\ 3b)</tex>, где для краткости символ <tex>(1,a)</tex> заменен на <tex>1a</tex>. | + | Подстановкой в группе <tex>C_3\times S_2</tex>, которая соответствует подстановке <tex>(123)+(ab)</tex> будет <tex>(1a\ 2b\ 3a\ 1b\ 2a\ 3b)</tex>, где для краткости символ <tex>(1,a)</tex> заменен на <tex>1a</tex>. (Порядок и степень равны <tex>6</tex>.) |
===Композиция групп=== | ===Композиция групп=== | ||
<tex>A[B]</tex> группы <tex>A</tex> относительно группы <tex>B</tex> также действует на множестве <tex>X\times Y</tex>. Для любой подстановки <tex>\alpha</tex> из <tex>A</tex> и любой последовательности <tex>(\beta_1,\beta_2,\ldots,\beta_d)</tex>, содержащей <tex>d</tex> (не обязательно различных) подстановок из <tex>B</tex>, существует единственная подстановка из <tex>A[B]</tex>, которая записывается в виде <tex>(\alpha;\beta_1,\beta_2,\ldots,\beta_d)</tex>, такая, что для всякой пары <tex>(x_i , y_i)</tex> из <tex>X\times Y</tex> выполняется равенство | <tex>A[B]</tex> группы <tex>A</tex> относительно группы <tex>B</tex> также действует на множестве <tex>X\times Y</tex>. Для любой подстановки <tex>\alpha</tex> из <tex>A</tex> и любой последовательности <tex>(\beta_1,\beta_2,\ldots,\beta_d)</tex>, содержащей <tex>d</tex> (не обязательно различных) подстановок из <tex>B</tex>, существует единственная подстановка из <tex>A[B]</tex>, которая записывается в виде <tex>(\alpha;\beta_1,\beta_2,\ldots,\beta_d)</tex>, такая, что для всякой пары <tex>(x_i , y_i)</tex> из <tex>X\times Y</tex> выполняется равенство | ||
+ | |||
<tex>(\alpha;\beta_1,\beta_2,\ldots,\beta_d)(x_i , y_j) = (\alpha x_i,\beta_i y_j).</tex> | <tex>(\alpha;\beta_1,\beta_2,\ldots,\beta_d)(x_i , y_j) = (\alpha x_i,\beta_i y_j).</tex> | ||
+ | |||
+ | |||
+ | Композиция <tex>C_3 [S_2 ] </tex> имеет степень <tex>6</tex> и порядок <tex>24</tex>. Любую подстановку из <tex>C_3 [S_2 ] </tex> можно записать в таком виде, как она действует на множестве <tex>X\times Y</tex>. Вводя опять обозначение <tex>1a</tex> для упорядоченной пары <tex>(1,a)</tex> и используя фэрмулу выше можно представить подстановку <tex>((123);(a)(b),(ab),(a)(b))</tex> в виде <tex>(1a\ 2a\ 3b\ 1b\ 2b\ 3a)</tex>. Заметим, что группа <tex>S_2 [C_3 ] </tex> имеет порядок <tex>18</tex> и поэтому не изоморфна группе <tex>C_3 [S_2 ] </tex>. | ||
===Степенная группа=== | ===Степенная группа=== | ||
(обозначается <tex>B^A</tex>) действует на множестве <tex>Y^X</tex> всех функций, отображающих <tex>X</tex> в <tex>Y</tex>. Будем всегда предполагать, что степенная группа действует на множестве, состоящем более чем из одной функции. Для каждой пары подстановок <tex>\alpha</tex> из <tex>A</tex> и <tex>\beta</tex> из <tex>B</tex> существует единственная подстановка из <tex>B^A</tex> (записывается <tex>\beta^\alpha</tex>), которая действует на любую функцию <tex>f</tex> из <tex>Y^X</tex> в соответствии со следующим соотношением, определяющим образ каждого элемента <tex>x\in X</tex> при отображении <tex>\beta^\alpha f</tex>: | (обозначается <tex>B^A</tex>) действует на множестве <tex>Y^X</tex> всех функций, отображающих <tex>X</tex> в <tex>Y</tex>. Будем всегда предполагать, что степенная группа действует на множестве, состоящем более чем из одной функции. Для каждой пары подстановок <tex>\alpha</tex> из <tex>A</tex> и <tex>\beta</tex> из <tex>B</tex> существует единственная подстановка из <tex>B^A</tex> (записывается <tex>\beta^\alpha</tex>), которая действует на любую функцию <tex>f</tex> из <tex>Y^X</tex> в соответствии со следующим соотношением, определяющим образ каждого элемента <tex>x\in X</tex> при отображении <tex>\beta^\alpha f</tex>: | ||
+ | |||
<tex>(\beta^\alpha f)(x)=\beta f(\alpha x).</tex> | <tex>(\beta^\alpha f)(x)=\beta f(\alpha x).</tex> | ||
+ | |||
+ | |||
+ | Степенная группа <tex>S_{2}^{C_3}</tex> имеет порядок <tex>6</tex> и степень <tex>8</tex>. Применяя формулу выше, видим, что подстановка этой группы, полученная из подстановок <tex>\alpha = (123)</tex> и <tex>\beta = (ab)</tex>, имеет один цикл длины <tex>2</tex> и один цикл длины <tex>6</tex>. | ||
==См. также== | ==См. также== |
Версия 23:14, 13 декабря 2016
Определение: |
Автоморфизмом (англ. Automorphism) графа | называется изоморфизм графа на себя
Каждый автоморфизм графа есть подстановка множества вершин , сохраняющая смежность. Конечно, подстановка переводит любую вершину графа в вершину той же степени. Очевидно, что последовательное выполнение двух автоморфизмов есть также автоморфизм;
Определение: |
Автоморфизмы графа группу подстановок , действующую на множестве вершин . Эту группу называют группой или иногда вершинной группой графа (англ. point-group). | образуют
Определение: |
Вершинная группа графа | индуцирует другую группу подстановок , называемую реберной группой графа (англ. line-group) — она действует на множестве ребер .
Для иллюстрации различия групп
и рассмотрим граф , показанный на рисунке; его вершины помечены а ребра . Вершинная группа состоит из четырех подстановокТождественная подстановка вершинной группы индуцирует тождественную подстановку на множестве ребер, в то время как подстановка
индуцирует подстановку на множестве ребер, в которой ребро остается на месте, меняется с , а с . Таким образом, реберная группа состоит из следующих подстановок, индуцируемых указанными выше элементами вершинной группы:Понятно, что реберная и вершинная группы графа
изоморфны. Но они, конечно, не могут быть идентичными, так как степень группы равна , а степень группы равна .Теорема: |
Реберная и вершинная группы графа изоморфны тогда и только тогда, когда граф имеет не более одной изолированной вершины, а граф не является его компонентой. |
Доказательство: |
Пусть подстановка группы индуцируется подстановкой группы . Из определения операции умножения в группе вытекает, чтодля . Поэтому отображение является групповым гомоморфизмом группы на . Следовательно, тогда и только тогда, когда ядро этого отображения тривиально.
Для доказательства необходимости предположим, что . Тогда из неравенства ( — тождественная подстановка) следует, что . Если в графе существуют две различные изолированные вершины и , то можно определить подстановку , положив для . Тогда , но . Если — компонента графа , то, записав ребро графа в виде и определив подстановку точно так же, как выше, получим , но .
Чтобы доказать достаточность, предположим, что граф имеет не больше одной изолированной вершины и не является его компонентой. Если группа тривиальна, то очевидно, что группа оставляет на месте каждое ребро и, следовательно, — тривиальная группа. Поэтому предположим, что существует подстановка , для которой . Тогда степени вершин и равны. Поскольку вершины и не изолированы, их степени не равны нулю. Здесь возникает два случая.Случай 1. Вершины Случай 2. Вершины и смежны. Пусть . Так как не является компонентой графа , то степени обеих вершин и больше единицы. Следовательно, существует такое ребро инцидентное вершине , что ребро инцидентно вершине . Отсюда , и тогда . и не смежны. Пусть — произвольное ребро, инцидентное вершине . Тогда , следовательно, . |
Содержание
Операции на группах подстановок
Пусть
— группа подстановок порядка и степени , действующая на множестве , а — другая группа подстановок порядка и степени , действующая на множестве . Например, пусть — циклическая группа порядка , действующая на множестве . Эта группа состоит из трех подстановок и . Если взять в качестве симметрическую группу порядка , действующую на множестве , то получим две подстановки и . Проиллюстрируем на этих двух группах подстановок действие нескольких бинарных операций.Сумма подстановок
— это группа подстановок, действующая на объединении непересекающихся множеств и элементы которой записываются в виде и представляют собой упорядоченные пары подстановок из и из . Каждый элемент , принадлежащий множеству преобразуется подстановкой по правилу
Таким образом, группа содержит подстановок, каждую из которых можно записать в виде суммы подстановок и , как, например, . (степень равна .)
Произведение групп
— это группа подстановок, действующая на множестве , элементы которой записываются в виде и представляют собой упорядоченные пары подстановок из и из . Элемент множества преобразуется подстановкой естественным образом:
Подстановкой в группе , которая соответствует подстановке будет , где для краткости символ заменен на . (Порядок и степень равны .)
Композиция групп
группы относительно группы также действует на множестве . Для любой подстановки из и любой последовательности , содержащей (не обязательно различных) подстановок из , существует единственная подстановка из , которая записывается в виде , такая, что для всякой пары из выполняется равенство
Композиция имеет степень и порядок . Любую подстановку из можно записать в таком виде, как она действует на множестве . Вводя опять обозначение для упорядоченной пары и используя фэрмулу выше можно представить подстановку в виде . Заметим, что группа имеет порядок и поэтому не изоморфна группе .
Степенная группа
(обозначается
) действует на множестве всех функций, отображающих в . Будем всегда предполагать, что степенная группа действует на множестве, состоящем более чем из одной функции. Для каждой пары подстановок из и из существует единственная подстановка из (записывается ), которая действует на любую функцию из в соответствии со следующим соотношением, определяющим образ каждого элемента при отображении :
Степенная группа имеет порядок и степень . Применяя формулу выше, видим, что подстановка этой группы, полученная из подстановок и , имеет один цикл длины и один цикл длины .
См. также
Источники информации
- Харари Ф. Теория графов. М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.)