Формула Байеса — различия между версиями
(→Доказательство) |
(Добавлена информация про байесовский фильтр) |
||
Строка 28: | Строка 28: | ||
<tex>P(B_1|A)=\frac{P(B_1 \cap A)}{P(A)}=\frac{P(A|B_1)P(B_1)}{P(A|B_1)P(B_1)+P(A|B_2)P(B_2)}=\frac{100}{111}</tex> | <tex>P(B_1|A)=\frac{P(B_1 \cap A)}{P(A)}=\frac{P(A|B_1)P(B_1)}{P(A|B_1)P(B_1)+P(A|B_2)P(B_2)}=\frac{100}{111}</tex> | ||
+ | |||
+ | ==Метод фильтрации спама== | ||
+ | При проверке письма вычисляется вероятность того, что оно {{---}} спам. Для каждого слова эксперементально подсчитывается его ''вес'' {{---}} процент содержания этого слова в письмах, отмеченных пользователем, как спам. Тогда ''весом'' письма является среднее ''весов'' всех его слов. Таким образом, программа(анти-спам бот) считает письмо спамом, если его ''вес'' больше какой-то заданной пользователем планки (обычно 60-80%). После вынесения решения о полученном письме происходит пересчёт в базе данных весов слов, составляющих текст письма. Почтовый фильтр, основанный на такой системе, называется ''байесовским.'' | ||
+ | |||
+ | Недостаток метода заключается в том, что он основан на предположении, что одни слова чаще встречаются в спаме, а другие {{---}} в обычных письмах. Таким образом, если данное предположение неверно, то метод неэффективен. | ||
+ | |||
+ | '''Замечание.''' Если 80% писем, содержащих фразу <tex>"</tex>Привет :) Как дела?)<tex>"</tex>, являлись спамом, то и следующее письмо с этим словосочетанием c большой вероятностью {{---}} спам. | ||
== См. также == | == См. также == | ||
*[http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%91%D0%B0%D0%B9%D0%B5%D1%81%D0%B0 http://ru.wikipedia.org/wiki/Теорема_Байеса] | *[http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%91%D0%B0%D0%B9%D0%B5%D1%81%D0%B0 http://ru.wikipedia.org/wiki/Теорема_Байеса] |
Версия 00:35, 13 января 2012
Определение: |
Формула Байеса — одна из основных формул элементарной теории вероятностей, которая позволяет определить вероятность того, что произошло какое-либо событие, имея на руках лишь косвенные тому подтверждения, которые могут быть неточны. |
Формулировка
- ,
где
- — вероятность события A;
- — вероятность события A при наступлении события B;
- — вероятность наступления события B при истинности события A;
- — вероятность наступления события B.
Доказательство
Пример
Пусть событие А истинно, если анализ на грипп положительный, событие B1 отвечает за грипп, B2 отвечает за другую болезнь. Также предположим, что:
- =0,9,
- =0,001,
- =0,01,
- =0,99.
Рассмотрим вероятность гриппа при положительном анализе:
Метод фильтрации спама
При проверке письма вычисляется вероятность того, что оно — спам. Для каждого слова эксперементально подсчитывается его вес — процент содержания этого слова в письмах, отмеченных пользователем, как спам. Тогда весом письма является среднее весов всех его слов. Таким образом, программа(анти-спам бот) считает письмо спамом, если его вес больше какой-то заданной пользователем планки (обычно 60-80%). После вынесения решения о полученном письме происходит пересчёт в базе данных весов слов, составляющих текст письма. Почтовый фильтр, основанный на такой системе, называется байесовским.
Недостаток метода заключается в том, что он основан на предположении, что одни слова чаще встречаются в спаме, а другие — в обычных письмах. Таким образом, если данное предположение неверно, то метод неэффективен.
Замечание. Если 80% писем, содержащих фразу
Привет :) Как дела?) , являлись спамом, то и следующее письмо с этим словосочетанием c большой вероятностью — спам.