Теорема о рекурсии — различия между версиями
(→Теорема о рекурсии) |
(→Теорема о рекурсии) |
||
Строка 52: | Строка 52: | ||
} | } | ||
} | } | ||
− | |||
Если говорить неформально, теорема о рекурсии утверждает, что внутри программы можно использовать ее код. Это упрощает доказательство некоторых теорем. | Если говорить неформально, теорема о рекурсии утверждает, что внутри программы можно использовать ее код. Это упрощает доказательство некоторых теорем. | ||
Версия 22:12, 14 декабря 2016
Теорема о рекурсии
{{Теорема
|id=th1
|author=Клини
|about=о рекурсии / Kleene's recursion theorem
|statement= Пусть вычислимая функция. Тогда найдётся такая вычислимая , что .
|proof=
Приведем конструктивное доказательство теоремы.
Пусть есть вычислимая . Будем поэтапно строить функцию .
Предположим, что у нас в распоряжении есть функция , которая вернет код . Тогда саму можно переписать так:
function p(y) { V(x, y) { ... } main() { return V(getSrc(), y) } getSrc() { ... } }
Теперь нужно определить функцию
. Предположим, что внутри мы можем определить функцию , состоящую из одного оператора , которая вернет весь предшествующий ей код. Тогда перепишется так.function p(y) { V(x, y) { ... } main() { return V(getSrc(), y) } string getSrc() { string src = getOtherSrc() return src + "string getOtherSrc() {" + "\n" + "return" + src + "\n" + "}"; } }
Теперь
определяется очевидным образом, и мы получаем итоговую версию функцииfunction p(y) { V(x, y) { ... } main() { return V(getSrc(), y) } string getSrc() { string src = getOtherSrc() return src + "string getOtherSrc() {" + "\n" + "return" + src + "\n" + "}"; } }
Если говорить неформально, теорема о рекурсии утверждает, что внутри программы можно использовать ее код. Это упрощает доказательство некоторых теорем.
Приведем так же альтернативую формулировку теоремы и альтернативное (неконструктивное) доказательство.
Теорема о неподвижной точке
Введем на множестве натуральных чисел следующее отношение:
и докажем вспомогательную лемму.Определение: |
Функция | называется — продолжением функции , если для всех таких , что определено, .
Лемма: |
Для всякой вычислимой функции существует вычислимая и всюду определенная функция , являющаяся ее — продолжением. |
Доказательство: |
Рассмотрим вычислимую функцию от двух аргументов . Так как — вычислимая, то существует вычислимая и всюду определенная функция такая, что: .Покажем, что Таким образом, мы нашли будет являться — продолжением функции . Если определено, то вернет другой номер той же вычислимой функции. Если же не определено, то вернет номер нигде не определенной функции. — продолжение для произвольно взятой вычислимой функции . |
Теорема (Роджерс, о неподвижной точке / Rogers' fixed-point theorem): |
Пусть универсальная функция для класса вычислимых функций одного аргумента, — всюду определённая вычислимая функция одного аргумента. Тогда найдется такое , что , то есть и - номера одной функции. — |
Доказательство: |
Будем доказывать теорему от противного: предположим, что существует всюду определенная вычислимая функция , такая, что для любого . В терминах введенного нами отношения, это значит, что не имеет — неподвижных точек.Рассмотрим некоторую вычислимую функцию, от которой никакая вычислимая функция не может отличаться всюду. Такой будет, например Согласно доказанной нами лемме, существует вычислимая и всюду определенная функция (действительно, если предположить, что существует вычислимая функция , всюду отличная от , то нарушается определение универсальной функции.) , являющаяся — продолжением функции . Давайте зададим функцию следующим образом: , где - искомая всюду определенная, вычислимая функция, не имеющая — неподвижных точек. Тогда всюду отличается от (в силу того, что не имеет неподвижных точек.) Получили противоречие, из чего следует, что такой функции не существует. |
См. также
Источники
- Wikipedia — Kleene's recursion theorem
- Верещагин Н. К., Шень А. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции — М.: МЦНМО, 1999 - С. 176
- Kleene, Stephen On notation for ordinal numbers - The Journal of Symbolic Logic, 1938 - С. 150-155