Дискретное преобразование Фурье — различия между версиями
(→Следствия) |
(→Применение ДПФ) |
||
Строка 35: | Строка 35: | ||
</center> | </center> | ||
− | Так как ДПФ многолчена {{---}} это вектор его значений, значит, перемножение двух ДПФ требует только <tex>O(n)</tex> операций. Осталось только вычислять ДПФ и обратное ДПФ за время <tex>O( | + | Так как ДПФ многолчена {{---}} это вектор его значений, значит, перемножение двух ДПФ требует только <tex>O(n)</tex> операций. Осталось только вычислять ДПФ и обратное ДПФ за время <tex>O(n\logn)</tex>. Для этого используем [[Быстрое преобразование Фурье| быстрое преобразование Фурье]]. |
== ДПФ в модульной арифметике == | == ДПФ в модульной арифметике == |
Версия 23:29, 14 декабря 2016
Определение: |
Дискретное преобразование Фурье (англ. Discrete Fourier Transform, DFT) многочлена где — ый из комплексных корней из единицы. называется главным значением корня -ой степени из единицы, а все остальные корни являются его степенями: . | называют вектор значений этого многочлена в точках :
Определение: |
Обратное дискретное преобразование Фурье (англ. Inverse DFT) для вектора значений многочлена
| — вектор коэффициентов этого многочлена :
Содержание
Применение ДПФ
Дискретное преобразование Фурье используют для быстрого перемножения двух полиномов
и .Для того чтобы получить произведение двух многочленов за время, меньшее чем
, необходимо сначала посчитать обоих многочленов. Так как при умножении двух многочленов их значения просто перемножаются в каждой точке. Следовательно, если — это вектор значений многочлена, то мы можем получить значение произведения двух многочленов, просто перемножив их ДПФ. Значит, чтобы получить коэффициенты полученного многочлена, применим обратное ДПФ.
Так как ДПФ многолчена — это вектор его значений, значит, перемножение двух ДПФ требует только быстрое преобразование Фурье.
операций. Осталось только вычислять ДПФ и обратное ДПФ за время . Для этого используемДПФ в модульной арифметике
В основе ДПФ используются комплексные числа, являющиеся корнями группу, то есть степень одного корня всегда является другим корнем. Среди них есть корень, называемый примитивным.
-ой степени из единицы. Для эффективного вычисления использовались свойства комплексных корней, которые образуютОднако, то же верно и в случае корней
-ой степени из единицы в модульной арифметике. Не для любого модуля найдется различных корней, но такие модули все же существуют. Необходимо найти примитивный корень, то есть:
Как и с комплексными корнями, остальные
корней -ой степени из единицы по модулю можно получить как степени примитивного корняСледствия
Утверждение: |
Применим к обеим частям обратное ДПФ и получим:
Заметим, что слева у нас находится вектор значений многочлена с коэффициентами и обозначим его за . Заметим, что:
Теперь рассмотрим правую часть. По определению, справа у нас находится вектор коэффициентов многочлена со значениями в точках . Обозначим его как , где:
где
Тогда, подставляя значения , получаем:
А так как , получаем:
|
Пример
Посчитаем
для полинома степени .
Тогда подставляя значения
в получаем:
Построим матрицу Вандермонда:
Получаем вектор значений многочлена
:
В итоге получаем: