Регулярная аппроксимация КС-языков — различия между версиями
Ateuhh (обсуждение | вклад) (→Аппроксимации самоприменимой грамматики) |
Ateuhh (обсуждение | вклад) м (→Идея алгоритма) |
||
Строка 25: | Строка 25: | ||
Пусть, <tex> P = \{N_1,N_2,...,N_K\} </tex> разбиение <tex> N^*</tex> на <tex> k </tex> дизъюнктных множеств взаимно рекурсивных терминалов, | Пусть, <tex> P = \{N_1,N_2,...,N_K\} </tex> разбиение <tex> N^*</tex> на <tex> k </tex> дизъюнктных множеств взаимно рекурсивных терминалов, | ||
<tex> N_1 \cup N_2 \cup ... \cup N_k = N^* \land \forall i N_i \neq \emptyset </tex>. | <tex> N_1 \cup N_2 \cup ... \cup N_k = N^* \land \forall i N_i \neq \emptyset </tex>. | ||
− | |||
'''function''' IsLeftType(<tex>N_i</tex>) | '''function''' IsLeftType(<tex>N_i</tex>) | ||
'''return''' <tex> \exists (A \Rightarrow \alpha B \beta) \in P[ A \in N_i \land B \in N_i \land \alpha \neq \varepsilon ]</tex> | '''return''' <tex> \exists (A \Rightarrow \alpha B \beta) \in P[ A \in N_i \land B \in N_i \land \alpha \neq \varepsilon ]</tex> | ||
Строка 32: | Строка 31: | ||
'''return''' <tex> \exists (A \Rightarrow \alpha B \beta) \in P[ A \in N_i \land B \in N_i \land \beta \neq \varepsilon ]</tex> | '''return''' <tex> \exists (A \Rightarrow \alpha B \beta) \in P[ A \in N_i \land B \in N_i \land \beta \neq \varepsilon ]</tex> | ||
− | + | Введем функцию <tex> getTheTypeOfMutualRecursiveSet(N_i): P \rightarrow \{left, right, self, cycle\} </tex>: | |
'''function''' getTheTypeOfMutualRecursiveSet (<tex>N_i</tex>): | '''function''' getTheTypeOfMutualRecursiveSet (<tex>N_i</tex>): | ||
'''if''' !IsLeftType(<tex>N_i</tex>) && IsRightType(<tex>N_i</tex>) | '''if''' !IsLeftType(<tex>N_i</tex>) && IsRightType(<tex>N_i</tex>) |
Версия 12:34, 16 декабря 2016
Содержание
Определения
Определение: |
Контекстно-свободная грамматика называется самоприменимой (англ. self-embeded), если , . |
Определение: |
Нетерминал | в грамматике называется рекурсивным (англ. recursive), если .
Определение: |
Нетерминалы | в грамматике называются взаимно рекурсивными (англ. mutual recursive), если .
Алгоритм преобразования грамматики в конечный автомат
Лемма: |
Не самоприменимая контекстно-свободная грамматика генерирует регулярный язык. |
Доказательство: |
В качестве конструктивного доказательства, мы приведем алгоритм построения конечного автомата по грамматике. Для желающих, приведем ссылку на формальное доказательство. |
Идея алгоритма
Пусть,
множество рекурсивных терминалов из . Пусть, разбиение на дизъюнктных множеств взаимно рекурсивных терминалов, .function IsLeftType() return function IsRightType( ) return
Введем функцию
:function getTheTypeOfMutualRecursiveSet (): if !IsLeftType( ) && IsRightType( ) return left; if IsLeftType( ) && !IsRightType( ) return right; if (IsLeftType( ) && IsRightType( ) return self; if !IsLeftType( ) && !IsRightType( ) return cyclic;
Заметим, что
В основе алгоритма будет рекурсивный обход грамматики. Спускаемся по грамматике до тех пор не приходим в нетерминал или символ алфавита:
- символ алфавит или — добавляем новое правило в автомат
- нерекурсивный нетерминал — запускаемся от всех правых частей правил, который терминал порождает
- рекурсивный нетерминал — в зависимости от типа рекурсивного нетерминала, продолжаем рекурсию (будет ясно из пседокода)
Псевдокод
— множество состояний ДКА.
— множество переходов ДКА.
— множество допускающих состояний.
function createFA(G) //s = createState f = createState return makeFA (s,S,f) function makeFA (q0,a,q1) if a == || a // пришли в лист дерева разбора return if a == where q = createState makeFA ( ) makeFA ( ) return if exist where foreach b in = createState if getTheTypeOfMutualRecursiveSet( ) == left foreach C in where makeFA ( ) foreach C,D in where makeFA ( ) else // рекурсивный нетерминал right или cyclic foreach C in where makeFA ( ) foreach C,D in where makeFA ( ) return foreach p in where p == makeFA ( )
Аппроксимации самоприменимой грамматики
В данном разделе покажем методы апроксимации: RTN (recursive transition network) аппроксимацию и MN (Mohri and Nederhof's) аппроксимацию — самоприменимой контекстно-свободной грамматики НФХ.
к регулярной грамматике. Для удобства будем считать, что грамматика представлена вRTN аппроксимация
Построим, по данной грамматике аппроксимирующий ее конечный автомат.
- Для каждого нетерминала в грамматике, создадим новый конечный автомат , добавим в него два состояния и .
- Для каждого правила грамматике , введм новые состояния в автомат этого нетерминала , а также добавим новые правила перехода в : .
- Таким образом мы построили множество конечных автоматов = для каждого нетерминала . Теперь объединим все в один автомат. Объединим все состоянии автоматов из в множество . Скопируем все переходы каждого автомата из в . Далее для каждого перехода вида , вместо него добавим два новых перехода: .
MN аппроксимация
Построим по данной самоприменимой контекстно-свободной грамматике
регулярную грамматику .- Для каждого нетерминала из , добавим нетерминалы и в .
- Для каждого правила
(Если , тогда добавим правило ). , где . Добавим в нетерминалы и следуюшие правила: .
В итоге правоконтекстная грамматика, эквивалентная конечному автомату, который задает регулярный язык.
—Пример
Исходная грамматика генерирует язык: . Результирущая грамматика генирирует регулярный язык: .
Сравнение двух методов
Ясно, что оба языка, генерируемых конечным автомат для первого метода и апрокисимируещей граматикой для второго метода, содержат в себе язык генерируемый исходной грамматикой.
Привлекателным свойством MN аппроксимации по сравнению с RTN, то, что она можеть быть применима к большим грамматикам: для каждого нетерминала грамматике , добавляется не более одного нового нетерминала в и размер результирующий грамматики максимум в раза больше, чем размер исходной. Так как для RTN апроксимации грамматики , количество состаяний апроксимируещего автомата в худшем случаи может составлять , что может быть критично для аппроксимации больших грамматик.
Также,еще несколько эффекивных методов аппрокимации можно найти в статьях, приведенных в ссылках.
Источники информации
- Jean-Claude Junqua,Gertjan van Noord — Robustness in Language and Speech Technology — Kluwer Academic Publishers, 2001 — ISBN 0-7923-6790-1
- Strongly Regular Grammars and Regular Approximation of Contex-Free Languages
- Willem J. M. Levelt — An Introduction to the Theory of Formal Languages and Automata — John Benjamin B.V., 2008 — ISBN 978-90-272-3250-2