Алгоритм отмены цикла минимального среднего веса — различия между версиями
Penguinni (обсуждение | вклад) (→Источники информации) |
Penguinni (обсуждение | вклад) |
||
Строка 9: | Строка 9: | ||
{{Определение | {{Определение | ||
|definition='''Средним весом''' (англ. ''mean weight'') цикла будем называть отношение его стоимости к его длине <tex>\mu (C)=\dfrac{p(C)}{\texttt{len}(C)}</tex>}} | |definition='''Средним весом''' (англ. ''mean weight'') цикла будем называть отношение его стоимости к его длине <tex>\mu (C)=\dfrac{p(C)}{\texttt{len}(C)}</tex>}} | ||
+ | Данный алгоритм заключается в последовательной отмене циклов минимального среднего веса в [[Дополняющая сеть, дополняющий путь|остаточной сети]] посредством их насыщения. Алгоритм работает до тех пор, пока минимальный средний вес циклов не окажется положительным, что будет означать, что поток минимальной стоимости найден. | ||
* '''Шаг 1'''. Рассмотрим некоторый поток <tex>f</tex>. | * '''Шаг 1'''. Рассмотрим некоторый поток <tex>f</tex>. | ||
* '''Шаг 2'''. Найдем цикл <tex>C</tex>, обладающий наименьшим средним весом. Если <tex>\mu (C) \geqslant 0</tex>, то <tex>f</tex> {{---}} поток минимальной стоимости и алгоритм завершается. | * '''Шаг 2'''. Найдем цикл <tex>C</tex>, обладающий наименьшим средним весом. Если <tex>\mu (C) \geqslant 0</tex>, то <tex>f</tex> {{---}} поток минимальной стоимости и алгоритм завершается. | ||
Строка 14: | Строка 15: | ||
===Сложность=== | ===Сложность=== | ||
− | <tex>O(VE\cdot VE^{2}\log{V})</tex> | + | Для сетей с целочисленными стоимостями |
− | <tex>O(VE)</tex> времени тратится на поиск цикла минимального среднего веса. | + | <tex>O(VE\cdot VE\log{CV})</tex>, с вещественными {{---}} <tex>O(VE\cdot VE^{2}\log{V})</tex>. |
+ | В обоих случаях <tex>O(VE)</tex> времени тратится на поиск цикла минимального среднего веса. | ||
===Корректность=== | ===Корректность=== | ||
Строка 25: | Строка 27: | ||
{{Лемма | {{Лемма | ||
|id=lemma1 | |id=lemma1 | ||
+ | |about=№1 | ||
|statement=Если <tex>f</tex> {{---}} поток минимальной стоимости, то <tex>\exists \varphi</tex> такое, что <tex>\forall uv: \; c_{f}(uv) > 0 \qquad p_{\varphi}(uv) \geqslant 0</tex>. | |statement=Если <tex>f</tex> {{---}} поток минимальной стоимости, то <tex>\exists \varphi</tex> такое, что <tex>\forall uv: \; c_{f}(uv) > 0 \qquad p_{\varphi}(uv) \geqslant 0</tex>. | ||
|proof= | |proof= | ||
− | :Рассмотрим | + | :Рассмотрим остаточную сеть {{---}} граф <tex>G_{f}</tex>. В нем нет отрицательных циклов, так как <tex>f</tex> {{---}} поток минимальной стоимости<ref>[[Лемма об эквивалентности свойства потока быть минимальной стоимости и отсутствии отрицательных циклов в остаточной сети]]</ref>. |
:Добавим вершину <tex>a</tex> и проведем из нее ребро стоимости <tex>0</tex> во все вершины графа <tex>G_{f}</tex>. В качестве <tex>\varphi(u)</tex> выберем стоимость минимального пути из <tex>a</tex> в <tex>u</tex>. | :Добавим вершину <tex>a</tex> и проведем из нее ребро стоимости <tex>0</tex> во все вершины графа <tex>G_{f}</tex>. В качестве <tex>\varphi(u)</tex> выберем стоимость минимального пути из <tex>a</tex> в <tex>u</tex>. | ||
− | :Рассмотрим теперь некоторое ребро <tex>uv</tex>. Понятно, что <tex>\varphi(v) \leqslant \varphi(u) + p(uv)</tex>. (Здесь сравниваются минимальный путь <tex>a \rightsquigarrow v</tex> и путь <tex>a \rightsquigarrow u \rightarrow v</tex>). Перенеся <tex>\varphi(v)</tex> в другую часть неравенства, получаем <tex>0 \leqslant \varphi(u) + p(uv) - \varphi(v)</tex> или <tex>0 \leqslant p_{\varphi}(uv)</tex> | + | :Рассмотрим теперь некоторое ребро <tex>uv</tex>. Понятно, что <tex>\varphi(v) \leqslant \varphi(u) + p(uv)</tex>. (Здесь сравниваются минимальный путь <tex>a \rightsquigarrow v</tex> и путь <tex>a \rightsquigarrow u \rightarrow v</tex>). Перенеся <tex>\varphi(v)</tex> в другую часть неравенства, получаем <tex>0 \leqslant \varphi(u) + p(uv) - \varphi(v)</tex> или <tex>0 \leqslant p_{\varphi}(uv)</tex>.}} |
{{Определение | {{Определение | ||
Строка 38: | Строка 41: | ||
{{Лемма | {{Лемма | ||
|id=lemma2 | |id=lemma2 | ||
+ | |about=№2 | ||
|statement=Если стоимости целочисленны и поток <tex>f</tex> {{---}} <tex>\varepsilon</tex>-оптимальный, где <tex>\varepsilon < \dfrac{1}{V}</tex>, то <tex>f</tex> {{---}} поток минимальной стоимости. | |statement=Если стоимости целочисленны и поток <tex>f</tex> {{---}} <tex>\varepsilon</tex>-оптимальный, где <tex>\varepsilon < \dfrac{1}{V}</tex>, то <tex>f</tex> {{---}} поток минимальной стоимости. | ||
|proof= | |proof= | ||
Строка 47: | Строка 51: | ||
{{Лемма | {{Лемма | ||
|id=lemma3 | |id=lemma3 | ||
+ | |about=№3 | ||
|statement=Если <tex>f</tex> {{---}} поток не минимальной стоимости, то <tex>\varepsilon^{*}=-\mu^{*}</tex>. | |statement=Если <tex>f</tex> {{---}} поток не минимальной стоимости, то <tex>\varepsilon^{*}=-\mu^{*}</tex>. | ||
|proof= | |proof= | ||
Строка 55: | Строка 60: | ||
*Теперь покажем, что <tex>\mu^{*} \leqslant -\varepsilon^{*}</tex>. | *Теперь покажем, что <tex>\mu^{*} \leqslant -\varepsilon^{*}</tex>. | ||
:Пусть <tex>p'(uv)=p(uv)-\mu^{*}</tex> для любого <tex>uv \in E_{f}</tex>. Логичным будет также обозначить для некоторого цикла <tex>C</tex> за <tex>\mu'(C)</tex> величину <tex>\dfrac{p'(C)}{\texttt{len}(C)}</tex>. Таким образом, для любого цикла <tex>C</tex>, <tex>\mu'(C)=\mu(C)-\mu^{*}\geqslant 0</tex>. | :Пусть <tex>p'(uv)=p(uv)-\mu^{*}</tex> для любого <tex>uv \in E_{f}</tex>. Логичным будет также обозначить для некоторого цикла <tex>C</tex> за <tex>\mu'(C)</tex> величину <tex>\dfrac{p'(C)}{\texttt{len}(C)}</tex>. Таким образом, для любого цикла <tex>C</tex>, <tex>\mu'(C)=\mu(C)-\mu^{*}\geqslant 0</tex>. | ||
− | :Далее проведем рассуждения, аналогичные доказательству [[#lemma1| | + | :Далее проведем рассуждения, аналогичные доказательству [[#lemma1|леммы №1]]. |
:Добавим вершину <tex>a</tex> и проведем из нее ребро стоимости <tex>0</tex> во все вершины графа <tex>G_{f}</tex>. В качестве <tex>\varphi(u)</tex> выберем стоимость (считая стоимостью функцию <tex>p'</tex>) минимального пути из <tex>a</tex> в <tex>u</tex>. | :Добавим вершину <tex>a</tex> и проведем из нее ребро стоимости <tex>0</tex> во все вершины графа <tex>G_{f}</tex>. В качестве <tex>\varphi(u)</tex> выберем стоимость (считая стоимостью функцию <tex>p'</tex>) минимального пути из <tex>a</tex> в <tex>u</tex>. | ||
:Таким образом, <tex>\varphi(v) \leqslant \varphi(u) + p'(uv) = \varphi(u) + p(uv) - \mu^{*}</tex>. Отсюда получаем, что <tex>p_{\varphi}(uv) \geqslant \mu^{*}</tex> для любого ребра <tex>uv</tex> из остаточной сети <tex>E_{f}</tex>, что означает, что <tex>f</tex> {{---}} <tex>(-\mu^{*})</tex>-оптимальный, и, по определению <tex>\varepsilon^{*}</tex>, <tex>\varepsilon^{*} \leqslant -\mu^{*}</tex>. | :Таким образом, <tex>\varphi(v) \leqslant \varphi(u) + p'(uv) = \varphi(u) + p(uv) - \mu^{*}</tex>. Отсюда получаем, что <tex>p_{\varphi}(uv) \geqslant \mu^{*}</tex> для любого ребра <tex>uv</tex> из остаточной сети <tex>E_{f}</tex>, что означает, что <tex>f</tex> {{---}} <tex>(-\mu^{*})</tex>-оптимальный, и, по определению <tex>\varepsilon^{*}</tex>, <tex>\varepsilon^{*} \leqslant -\mu^{*}</tex>. | ||
Строка 62: | Строка 67: | ||
{{Лемма | {{Лемма | ||
|id=lemma4 | |id=lemma4 | ||
+ | |about=№4 | ||
|statement=Отмена цикла минимального среднего веса не увеличивает <tex>\varepsilon^{*}</tex>. | |statement=Отмена цикла минимального среднего веса не увеличивает <tex>\varepsilon^{*}</tex>. | ||
|proof= | |proof= | ||
:Пусть <tex>C</tex> {{---}} цикл минимального среднего веса, который мы хотим отменить на текущем шаге нашего алгоритма. Перед тем, как мы отменим этот цикл, любое ребро в остаточной сети, в том числе, любое входящее в цикл <tex>C</tex> ребро <tex>uv</tex> удовлетворяет свойству <tex>\varepsilon^{*}</tex>-оптимальности: <tex>p_{\varphi}(uv) \geqslant -\varepsilon^{*}</tex>. | :Пусть <tex>C</tex> {{---}} цикл минимального среднего веса, который мы хотим отменить на текущем шаге нашего алгоритма. Перед тем, как мы отменим этот цикл, любое ребро в остаточной сети, в том числе, любое входящее в цикл <tex>C</tex> ребро <tex>uv</tex> удовлетворяет свойству <tex>\varepsilon^{*}</tex>-оптимальности: <tex>p_{\varphi}(uv) \geqslant -\varepsilon^{*}</tex>. | ||
− | :По [[#lemma3| | + | :По [[#lemma3|лемме №3]], <tex>\varepsilon^{*}=-\mu^{*}</tex>, то есть <tex>p_{\varphi}(uv) \geqslant \mu^{*}</tex>. Но поскольку <tex>\mu^{*}</tex> {{---}} средний вес цикла, то <tex>p_{\varphi}(uv) = \mu^{*} = -\varepsilon^{*}</tex>. |
:По [[Поток минимальной стоимости #Свойства стоимости|свойству антисимметричности потока]], после отмены цикла <tex>C</tex>, в остаточной сети появятся ребра стоимости <tex>\varepsilon</tex>. Таким образом, свойство <tex>p_{\varphi}(uv) \geqslant -\varepsilon</tex> все еще выполняется. | :По [[Поток минимальной стоимости #Свойства стоимости|свойству антисимметричности потока]], после отмены цикла <tex>C</tex>, в остаточной сети появятся ребра стоимости <tex>\varepsilon</tex>. Таким образом, свойство <tex>p_{\varphi}(uv) \geqslant -\varepsilon</tex> все еще выполняется. | ||
}} | }} | ||
Строка 75: | Строка 81: | ||
{{Лемма | {{Лемма | ||
|id=lemma5 | |id=lemma5 | ||
+ | |about=№5 | ||
|statement=Пусть <tex>f</tex> {{---}} некоторый поток, а <tex>f'</tex> {{---}} поток после <tex>E</tex> отмен циклов минимального среднего веса. Тогда <tex>\varepsilon'^{*} \leqslant \left(1-\dfrac{1}{V}\right)\varepsilon^{*}</tex>, где <tex>\varepsilon'^{*}</tex> {{---}} минимальное <tex>\varepsilon</tex> такое, что поток <tex>f'</tex> <tex>\varepsilon</tex>-оптимальный. | |statement=Пусть <tex>f</tex> {{---}} некоторый поток, а <tex>f'</tex> {{---}} поток после <tex>E</tex> отмен циклов минимального среднего веса. Тогда <tex>\varepsilon'^{*} \leqslant \left(1-\dfrac{1}{V}\right)\varepsilon^{*}</tex>, где <tex>\varepsilon'^{*}</tex> {{---}} минимальное <tex>\varepsilon</tex> такое, что поток <tex>f'</tex> <tex>\varepsilon</tex>-оптимальный. | ||
|proof= | |proof= | ||
− | :Изначально любое ребро <tex>uv</tex> удовлетворяет свойству <tex>p_{\varphi}(uv) \geqslant -\varepsilon^{*}</tex>. Отмена цикла добавляет в остаточную сеть <tex>G_{f}</tex> только ребра положительной приведенной стоимости (см. [[#lemma4| | + | :Изначально любое ребро <tex>uv</tex> удовлетворяет свойству <tex>p_{\varphi}(uv) \geqslant -\varepsilon^{*}</tex>. Отмена цикла добавляет в остаточную сеть <tex>G_{f}</tex> только ребра положительной приведенной стоимости (см. [[#lemma4|лемму №4]]) и удаляет из сети <tex>G</tex> как минимум одно ребро. Рассмотрим два случая: |
:#Ни один из отмененных циклов не содержал ребер, обладающих неотрицательной приведенной стоимостью. Тогда каждая отмена цикла уменьшает размер допустимого графа <tex>H</tex> и после <tex>E</tex> отмен граф <tex>H</tex> пуст, что означает, что <tex>f'</tex> {{---}} оптимальный поток, то есть <tex>\varepsilon'^{*}=0</tex>. | :#Ни один из отмененных циклов не содержал ребер, обладающих неотрицательной приведенной стоимостью. Тогда каждая отмена цикла уменьшает размер допустимого графа <tex>H</tex> и после <tex>E</tex> отмен граф <tex>H</tex> пуст, что означает, что <tex>f'</tex> {{---}} оптимальный поток, то есть <tex>\varepsilon'^{*}=0</tex>. | ||
− | :#Некоторые из отмененных циклов содержали ребра неотрицательной приведенной стоимости. Пусть впервые такое случилось на <tex>i</tex>-ой итерации, и, соответственно, <tex>C_{i}</tex> {{---}} первый из таких циклов. Для <tex>C_{i}</tex> имеем, что каждое его ребро обладает приведенной стоимостью как минимум <tex>-\varepsilon_{i}^{*}</tex> (при этом <tex>\varepsilon'^{*} \leqslant \varepsilon_{i}^{*} \leqslant \varepsilon^{*}</tex> по [[#lemma4| | + | :#Некоторые из отмененных циклов содержали ребра неотрицательной приведенной стоимости. Пусть впервые такое случилось на <tex>i</tex>-ой итерации, и, соответственно, <tex>C_{i}</tex> {{---}} первый из таких циклов. Для <tex>C_{i}</tex> имеем, что каждое его ребро обладает приведенной стоимостью как минимум <tex>-\varepsilon_{i}^{*}</tex> (при этом <tex>\varepsilon'^{*} \leqslant \varepsilon_{i}^{*} \leqslant \varepsilon^{*}</tex> по [[#lemma4|лемме №4]]), хотя бы одно из ребер <tex>C_{i}</tex> обладает неотрицательной приведенной стоимостью и количество ребер в <tex>C_{i}</tex> не превышает <tex>V</tex>. Тогда средний вес этого цикла <tex>\mu(C_{i}) = \mu_{i}^{*} \geqslant -\left(1-\dfrac{1}{V}\right)\varepsilon_{i}^{*} \geqslant - \left(1-\dfrac{1}{V}\right)\varepsilon^{*}</tex>, и <tex>\varepsilon'^{*} \leqslant \varepsilon_{i}^{*} = -\mu_{i}^{*} \leqslant \left(1-\dfrac{1}{V}\right)\varepsilon^{*}</tex>.}} |
{{Определение | {{Определение | ||
Строка 94: | Строка 101: | ||
:Покажем теперь, что <tex>f'</tex> не <tex>\varepsilon</tex>-оптимальный. | :Покажем теперь, что <tex>f'</tex> не <tex>\varepsilon</tex>-оптимальный. | ||
:Обозначим за <tex>G_{>}</tex> подграф <tex>G</tex> такой, что <tex>G_{>}=(V, \{uv \in E \;|\; f'(uv) > f(uv) \})</tex>. Рассмотрим некоторое ребро <tex>uv</tex> в <tex>G_{>}</tex>. Поскольку <tex>f</tex> и <tex>f'</tex> являются циркуляциями, в <tex>G_{>}</tex> должен содержаться простой цикл <tex>C</tex>, проходящий через <tex>uv</tex>. Поскольку все ребра в <tex>C</tex> {{---}} остаточные, стоимость <tex>C</tex> не меньше <tex>p_{\varphi}(uv) - (\texttt{len}(C)-1)\varepsilon \geqslant 2V\varepsilon - (V-1)\varepsilon > V\varepsilon</tex>. | :Обозначим за <tex>G_{>}</tex> подграф <tex>G</tex> такой, что <tex>G_{>}=(V, \{uv \in E \;|\; f'(uv) > f(uv) \})</tex>. Рассмотрим некоторое ребро <tex>uv</tex> в <tex>G_{>}</tex>. Поскольку <tex>f</tex> и <tex>f'</tex> являются циркуляциями, в <tex>G_{>}</tex> должен содержаться простой цикл <tex>C</tex>, проходящий через <tex>uv</tex>. Поскольку все ребра в <tex>C</tex> {{---}} остаточные, стоимость <tex>C</tex> не меньше <tex>p_{\varphi}(uv) - (\texttt{len}(C)-1)\varepsilon \geqslant 2V\varepsilon - (V-1)\varepsilon > V\varepsilon</tex>. | ||
− | :Теперь рассмотрим цикл <tex>\overline{C}</tex>, который получен из <tex>C</tex> разворотом всех его ребер. Заметим, что <tex>\overline{C}</tex> является циклом в <tex>G_{<}=(V,\{uv \in E \;|\; f'(uv) < f(uv)\})</tex> и, соответственно, циклом в <tex>G_{f}</tex>. По свойству антисимметричности, стоимость <tex>\overline{C}</tex> меньше, чем <tex>-V\varepsilon</tex> и, таким образом, <tex>\mu(\overline{C}) < -\varepsilon</tex>. Откуда по [[#lemma3|лемме]] имеем, что <tex>f'</tex> не <tex>\varepsilon</tex>-оптимален. | + | :Теперь рассмотрим цикл <tex>\overline{C}</tex>, который получен из <tex>C</tex> разворотом всех его ребер. Заметим, что <tex>\overline{C}</tex> является циклом в <tex>G_{<}=(V,\{uv \in E \;|\; f'(uv) < f(uv)\})</tex> и, соответственно, циклом в <tex>G_{f}</tex>. По свойству антисимметричности, стоимость <tex>\overline{C}</tex> меньше, чем <tex>-V\varepsilon</tex> и, таким образом, <tex>\mu(\overline{C}) < -\varepsilon</tex>. Откуда по [[#lemma3|лемме №3]] имеем, что <tex>f'</tex> не <tex>\varepsilon</tex>-оптимален. |
}} | }} | ||
Строка 102: | Строка 109: | ||
|proof= | |proof= | ||
:Оценка времени работы следует непосредственно из этого утверждения. | :Оценка времени работы следует непосредственно из этого утверждения. | ||
− | :Чтобы доказать его, рассмотрим некоторую группу итераций. Пусть <tex>f</tex> {{---}} поток до первой итерации, а <tex>f'</tex> {{---}} после последней итерации этой группы. Обозначим за <tex>\varepsilon'^{*}</tex> минимальное <tex>\varepsilon</tex> такое, что поток <tex>f'</tex> <tex>\varepsilon</tex>-оптимальный, а за <tex>\varphi'</tex> {{---}} функцию потенциалов такую, что <tex>f'</tex> удовлетворяет свойству <tex>\varepsilon'^{*}</tex>-оптимальности. Выбор <tex>k</tex> и [[#lemma5| | + | :Чтобы доказать его, рассмотрим некоторую группу итераций. Пусть <tex>f</tex> {{---}} поток до первой итерации, а <tex>f'</tex> {{---}} после последней итерации этой группы. Обозначим за <tex>\varepsilon'^{*}</tex> минимальное <tex>\varepsilon</tex> такое, что поток <tex>f'</tex> <tex>\varepsilon</tex>-оптимальный, а за <tex>\varphi'</tex> {{---}} функцию потенциалов такую, что <tex>f'</tex> удовлетворяет свойству <tex>\varepsilon'^{*}</tex>-оптимальности. Выбор <tex>k</tex> и [[#lemma5|лемма №5]] дают нам следующее неравенство: <tex>\varepsilon'^{*} \leqslant \varepsilon^{*} \left(1-\dfrac{1}{V} \right)^{V(\log V + 1)} \leqslant \dfrac{\varepsilon^{*}}{2V}</tex>. |
− | :Рассмотрим цикл <tex>C</tex>, отмененный на первой итерации рассматриваемой группы. Поскольку средний вес цикла <tex>C</tex> равен <tex>-\varepsilon^{*}</tex> (см. [[#lemma3|лемму]]), некоторое ребро <tex>uv</tex> цикла <tex>C</tex> должно иметь приведенную стоимость <tex>p_{\varphi'}(uv) \leqslant -\varepsilon^{*} \leqslant -2V\varepsilon'^{*}</tex>. Таким образом, поток на ребре <tex>uv</tex> не изменится при итерациях, происходящих после этой группы. Таким образом, по [[#theorem1|теореме]] каждая группа фиксирует поток на независимом ребре.}} | + | :Рассмотрим цикл <tex>C</tex>, отмененный на первой итерации рассматриваемой группы. Поскольку средний вес цикла <tex>C</tex> равен <tex>-\varepsilon^{*}</tex> (см. [[#lemma3|лемму №3]]), некоторое ребро <tex>uv</tex> цикла <tex>C</tex> должно иметь приведенную стоимость <tex>p_{\varphi'}(uv) \leqslant -\varepsilon^{*} \leqslant -2V\varepsilon'^{*}</tex>. Таким образом, поток на ребре <tex>uv</tex> не изменится при итерациях, происходящих после этой группы. Таким образом, по [[#theorem1|теореме]] каждая группа фиксирует поток на независимом ребре.}} |
==Алгоритм поиска цикла минимального среднего веса== | ==Алгоритм поиска цикла минимального среднего веса== |
Версия 00:13, 6 января 2017
В статье описывается один из сильно полиномиальных алгоритмов решения задачи о поиске потока минимальной стоимости.
Содержание
Алгоритм
Приведенный алгоритм основан на идее алгоритма Клейна отмены цикла отрицательного веса. Выбор цикла минимального среднего веса вместо случайного делает алгоритм сильно полиномиальным.
Определение: |
Сильно полиномиальными (англ. strongly polynomial) в контексте данной задачи называются алгоритмы, чья сложность полиномиально зависит от | и .
Описание
Обозначим как пропускную способность цикла при протекании в сети потока . Cтоимость цикла обозначим за , а длину (число входящих в него ребер) — за .
остаточнуюОпределение: |
Средним весом (англ. mean weight) цикла будем называть отношение его стоимости к его длине |
Данный алгоритм заключается в последовательной отмене циклов минимального среднего веса в остаточной сети посредством их насыщения. Алгоритм работает до тех пор, пока минимальный средний вес циклов не окажется положительным, что будет означать, что поток минимальной стоимости найден.
- Шаг 1. Рассмотрим некоторый поток .
- Шаг 2. Найдем цикл , обладающий наименьшим средним весом. Если , то — поток минимальной стоимости и алгоритм завершается.
- Шаг 3. Отменим цикл , пустив по нему максимально возможный поток: . Перейдем к шагу 1.
Сложность
Для сетей с целочисленными стоимостями
, с вещественными — . В обоих случаях времени тратится на поиск цикла минимального среднего веса.Корректность
Пусть потенциалов .
— поток минимальной стоимости. Введем на нашей сети функциюОпределение: |
Приведенной стоимостью (англ. reduced cost) ребра назовем следующую величину: | .
Иными словами, приведенная стоимость — это сколько нужно потратить денег, чтобы перевезти единицу жидкости из
в . (Ее нужно купить в , перевезти из в и продать в .)Лемма (№1): |
Если — поток минимальной стоимости, то такое, что . |
Доказательство: |
|
Определение: |
Будем говорить, что поток | — -оптимальный (англ. -optimal), если такая, что .
Лемма (№2): |
Если стоимости целочисленны и поток — -оптимальный, где , то — поток минимальной стоимости. |
Доказательство: |
|
Обозначим за
минимальную величину среди средних весов циклов для потока , а за минимальное такое, что поток — -оптимальный.Лемма (№3): |
Если — поток не минимальной стоимости, то . |
Доказательство: |
|
Лемма (№4): |
Отмена цикла минимального среднего веса не увеличивает . |
Доказательство: |
|
Определение: |
Допустимым графом (англ. admissible graph) будем называть такой подграф остаточной сети, что он включает только ребра отрицательной приведенной стоимости. |
Лемма (№5): |
Пусть — некоторый поток, а — поток после отмен циклов минимального среднего веса. Тогда , где — минимальное такое, что поток -оптимальный. |
Доказательство: |
|
Определение: |
-фиксированным (англ. -fixed) будем называть ребро, поток через которое неизменен для любых -оптимальных потоков в сети. |
Теорема: |
Пусть поток является -оптимальным с функцией потенциалов . Также пусть для некоторого ребра . Тогда ребро -фиксировано. |
Доказательство: |
|
Лемма (доказательство оценки времени работы алгоритма): |
Пусть . Разобьем работу алгоритма на группы по последовательных итераций. Утверждается, что каждая группа фиксирует поток на независимом ребре , то есть итерации из другой группы не меняют величину . |
Доказательство: |
|
Алгоритм поиска цикла минимального среднего веса
Наивный способ
Устроим двоичный поиск. Установим нижнюю и верхнюю границы величины среднего веса цикла и соответственно, вычислим серединное значение и отнимем полученную величину от всех ребер сети. Если теперь в нашей сети есть отрицательный цикл (этот факт можно проверить при помощи алгоритма Форда-Беллмана), значит существует цикл с меньшим средним весом, чем . Тогда продолжим поиск среди значений в диапазоне от до , иначе — от до . Такой алгоритм будет работать за , где — точность выбора величины среднего веса цикла.
Продвинутый алгоритм
Добавим к нашему графу вершину алгоритм Форда-Беллмана и попросим его построить нам квадратную матрицу со следующим условием: — длина минимального пути от до ровно из ребер. Тогда длина оптимального цикла минимального среднего веса вычисляется как .
и ребра из нее во все остальные вершины. ЗапустимДостаточно будет доказать это правило для
, так как для других можно просто отнять эту величину от всех ребер и получить снова случай с .Чтобы найти цикл после построения матрицы
, запомним, при каких и достигается оптимальное значение , и, используя , поднимемся по указателям предков. Как только мы попадем в уже посещенную вершину — мы нашли цикл минимального среднего веса.Этот алогоритм работает за
.См. также
- Использование потенциалов Джонсона при поиске потока минимальной стоимости
- Сведение задачи о назначениях к задаче о потоке минимальной стоимости
Примечания
Источники информации
- Лекция 14 | Дополнительные главы алгоритмов | Андрей Станкевич | CSC | Лекториум
- A.V.Goldberg and R.E.Tarjan — Finding Minimum-Cost Circulations by Cancelling Negative Cycles (Journal of the Association for Computing Machinery. Vol. 36, No. 4. October 1989. pp. 873-886.)
- Lecture by M.X.Goemans on Goldberg-Tarjan Min-Cost Circulation Algorithm