Линейность математического ожидания — различия между версиями
Chavit (обсуждение | вклад)  | 
				Chavit (обсуждение | вклад)   | 
				||
| Строка 1: | Строка 1: | ||
| − | Пусть <tex>  | + | Пусть <tex>summ</tex> - композиция двух перестановок.  | 
Рассмотрим множество <tex>K = \{f_g : g \in G\}</tex>. По доказанному выше, оно является подгруппой симметрической группы. Осталось доказать, что <tex>G</tex> и <tex>K</tex>  изоморфны. Для этого рассмотрим функцию <tex>T : G \rightarrow K,\, T(x) = f_x</tex>. Заметим, что  | Рассмотрим множество <tex>K = \{f_g : g \in G\}</tex>. По доказанному выше, оно является подгруппой симметрической группы. Осталось доказать, что <tex>G</tex> и <tex>K</tex>  изоморфны. Для этого рассмотрим функцию <tex>T : G \rightarrow K,\, T(x) = f_x</tex>. Заметим, что  | ||
Версия 02:41, 17 декабря 2010
Пусть - композиция двух перестановок. Рассмотрим множество . По доказанному выше, оно является подгруппой симметрической группы. Осталось доказать, что и изоморфны. Для этого рассмотрим функцию . Заметим, что
- .
 
Действительно, для всех , а тогда .
- - инъекция, потому что .
 - Сюрьективность очевидна из определения .
 
То есть - гомоморфизм, а значит изоморфизм и установлен.
}}