Арифметические действия с формальными степенными рядами — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Обратная)
Строка 1: Строка 1:
 
==Простейшие операции==
 
==Простейшие операции==
 
Рассмотрим два [[Производящая функция|формальных степенных ряда]] <tex>A(s) = a_0 + a_1 s + a_2 s^2 + \dots</tex> и <tex>B(s) = b_0 + b_1 s + b_2 s^2 + \dots</tex>.
 
Рассмотрим два [[Производящая функция|формальных степенных ряда]] <tex>A(s) = a_0 + a_1 s + a_2 s^2 + \dots</tex> и <tex>B(s) = b_0 + b_1 s + b_2 s^2 + \dots</tex>.
 
+
{{Определение
''Суммой'' <tex>A</tex> и <tex>B</tex> называется ряд <tex>A(s) + B(s) = (a_0 + b_0) + (a_1 + b_1) s + (a_2 + b_2) s^2 + \dots</tex>.
+
|definition = '''Суммой''' (англ. ''addition'') формальных степенных рядов <tex>A</tex> и <tex>B</tex> называется ряд <tex>A(s) + B(s) = (a_0 + b_0) + (a_1 + b_1) s + (a_2 + b_2) s^2 + \dots</tex>.
 
+
}}
''Произведением'' <tex>A</tex> и <tex>B</tex> называется ряд <tex>A(s)B(s) = a_0 b_0 + (a_0 b_1 + a_1 b_0) s + (a_0 b_2 + a_1 b_1 + a_2 b_0) s^2 + \dots</tex>.
+
{{Определение
 
+
|definition = '''Произведением''' (англ. ''multiplication'') формальных степенных рядов <tex>A</tex> и <tex>B</tex> называется ряд <tex>A(s)B(s) = a_0 b_0 + (a_0 b_1 + a_1 b_0) s + (a_0 b_2 + a_1 b_1 + a_2 b_0) s^2 + \dots</tex>.
 +
}}
 
Операции сложения и умножения формальных степенных рядов коммутативны и ассоциативны.
 
Операции сложения и умножения формальных степенных рядов коммутативны и ассоциативны.
  
Строка 19: Строка 20:
 
Пусть <tex>A(s) = a_0 + a_1 s + a_2 s^2 + \dots</tex> и <tex>B(s) = b_0 + b_1 s + b_2 s^2 + \dots</tex> {{---}} два формальных степенных ряда, причем <tex>B(0) = b_0 = 0</tex>.
 
Пусть <tex>A(s) = a_0 + a_1 s + a_2 s^2 + \dots</tex> и <tex>B(s) = b_0 + b_1 s + b_2 s^2 + \dots</tex> {{---}} два формальных степенных ряда, причем <tex>B(0) = b_0 = 0</tex>.
  
''Композицией (подстановкой)'' рядов <tex>A</tex> и <tex>B</tex> называется формальный степенной ряд <tex>A(B(t)) = a_0 + a_1 b_1 t + (a_1 b_2 + a_2 b_1^2) t^2 + (a_1 b_3 + 2 a_2 b_1 b_2 + a_3 b_1^3) t^3 + \dots</tex>.
+
{{Определение
 
+
|definition =
 +
'''Композицией (подстановкой)''' (англ. ''composition'') формальных степенных рядов <tex>A</tex> и <tex>B</tex> называется ряд <tex>A(B(t)) = a_0 + a_1 b_1 t + (a_1 b_2 + a_2 b_1^2) t^2 + (a_1 b_3 + 2 a_2 b_1 b_2 + a_3 b_1^3) t^3 + \dots</tex>.
 +
}}
 
Если, например, <tex>B(t) = -t</tex>, то <tex>A(B(t)) = A(-t) = a_0 -a_1 t + a_2 t^2 - a_3 t^3 + \dots</tex>.
 
Если, например, <tex>B(t) = -t</tex>, то <tex>A(B(t)) = A(-t) = a_0 -a_1 t + a_2 t^2 - a_3 t^3 + \dots</tex>.
  
Строка 29: Строка 32:
 
|about = об обратном формальном степенном ряде
 
|about = об обратном формальном степенном ряде
 
|statement = Пусть ряд <tex>B(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3 + \dots</tex> таков, что <tex>B(0) = b_0 = 0</tex>, а <tex>b_1 \ne 0</tex>. Тогда существуют такие ряды <tex> A(s) = a_1 s + a_2 s^2 + a_3 s^3 + \dots</tex>, <tex>A(0) = 0</tex> и <tex>C(u) = c_1 u + c_2 u^2 + c_3 u^3 + \dots</tex>, <tex>C(0) = 0</tex>, что <tex>A(B(t)) = t</tex> и <tex>B(C(u)) = u</tex>. При этом, ряды <tex>A</tex> и <tex>C</tex> единственны.  
 
|statement = Пусть ряд <tex>B(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3 + \dots</tex> таков, что <tex>B(0) = b_0 = 0</tex>, а <tex>b_1 \ne 0</tex>. Тогда существуют такие ряды <tex> A(s) = a_1 s + a_2 s^2 + a_3 s^3 + \dots</tex>, <tex>A(0) = 0</tex> и <tex>C(u) = c_1 u + c_2 u^2 + c_3 u^3 + \dots</tex>, <tex>C(0) = 0</tex>, что <tex>A(B(t)) = t</tex> и <tex>B(C(u)) = u</tex>. При этом, ряды <tex>A</tex> и <tex>C</tex> единственны.  
{{Определение
+
 
|definition=
+
Производящие функции, соответствующие рядам <tex>A</tex> и <tex>C</tex>, называются соответственно '''левой''' и '''правой обратной''' (англ. ''left (right) inverse'') к производящей функции, соответствующей ряду <tex>B</tex>.
Производящие функции, соответствующие рядам <tex>A</tex> и <tex>C</tex>, называются соответственно '''левой''' и '''правой обратной''' к производящей функции, соответствующей ряду <tex>B</tex>.
 
}}
 
 
|proof =
 
|proof =
 
:Докажем существование и единственность левой обратной функции. Доказательство для правой обратной аналогично.  
 
:Докажем существование и единственность левой обратной функции. Доказательство для правой обратной аналогично.  
 
:Будем определять коэффициенты ряда <tex>A</tex> последовательно. Коэффициент <tex>a_1</tex> определяется из условия <tex>a_1 b_1 = 1</tex>, откуда <tex>a_1 = \dfrac{1}{b_1}</tex>.  
 
:Будем определять коэффициенты ряда <tex>A</tex> последовательно. Коэффициент <tex>a_1</tex> определяется из условия <tex>a_1 b_1 = 1</tex>, откуда <tex>a_1 = \dfrac{1}{b_1}</tex>.  
:Предположим теперь, что коэффициенты <tex>a_1, a_2, \dots, a_n</tex> уже определены. Коэффициент <tex>a_{n+1}</tex> определяется из условия <tex>a_{n+1} b_1^{n+1} + \dots = 0</tex>, где точками обозначен неокторый многочлен от <tex>a_1, \dots, a_n</tex> и <tex>b_1, \dots, b_n</tex>. Тем самым, условие представляет собой линейное уравнение на <tex>a_{n+1}</tex>, причем коэффициент <tex>b_1^{n+1}</tex> при <tex>a_{n+1}</tex> отличен от нуля. Такое уравнение имеет единственное решение, и теорема доказана.
+
:Предположим теперь, что коэффициенты <tex>a_1, a_2, \dots, a_n</tex> уже определены. Коэффициент <tex>a_{n+1}</tex> определяется из условия <tex>a_{n+1} b_1^{n+1} + \dots = 0</tex>, где точками обозначен некоторый многочлен от <tex>a_1, \dots, a_n</tex> и <tex>b_1, \dots, b_n</tex>. Тем самым, условие представляет собой линейное уравнение на <tex>a_{n+1}</tex>, причем коэффициент <tex>b_1^{n+1}</tex> при <tex>a_{n+1}</tex> отличен от нуля. Такое уравнение имеет единственное решение, и теорема доказана.
 
}}
 
}}
  

Версия 21:13, 23 мая 2017

Простейшие операции

Рассмотрим два формальных степенных ряда [math]A(s) = a_0 + a_1 s + a_2 s^2 + \dots[/math] и [math]B(s) = b_0 + b_1 s + b_2 s^2 + \dots[/math].

Определение:
Суммой (англ. addition) формальных степенных рядов [math]A[/math] и [math]B[/math] называется ряд [math]A(s) + B(s) = (a_0 + b_0) + (a_1 + b_1) s + (a_2 + b_2) s^2 + \dots[/math].


Определение:
Произведением (англ. multiplication) формальных степенных рядов [math]A[/math] и [math]B[/math] называется ряд [math]A(s)B(s) = a_0 b_0 + (a_0 b_1 + a_1 b_0) s + (a_0 b_2 + a_1 b_1 + a_2 b_0) s^2 + \dots[/math].

Операции сложения и умножения формальных степенных рядов коммутативны и ассоциативны.

Деление

Лемма (деление формальных степенных рядов):
Пусть [math]A(s) = a_0 + a_1 s + a_2 s^2 + a_3 s^3 + \dots [/math] — формальный степенной ряд, причем [math]A(0) \ne 0[/math]. Тогда существует единственный формальный степенной ряд [math]B(s) = b_0 + b_1 s + b_2 s^2 + b_3 s^3 + \dots [/math], такой что [math]A(s)B(s) = 1[/math], то есть [math]B(s) = A^{-1}(s)[/math].
Доказательство:
[math]\triangleright[/math]
Проведем доказательство по индукции. Нам известно, что [math]b_0 = \dfrac{1}{a_0}[/math]. Пусть теперь все коэффициенты ряда [math]B[/math] вплоть до степени [math]n - 1[/math] однозначно определены. Коэффициент при [math]s^n[/math] определяется из условия [math]a_0 b_n + a_1 b_{n - 1} + \dots + a_n b_0 = 0[/math]. Это линейное уравнение на [math]b_n[/math], причем коэффициент [math]a_0[/math] при [math]b_n[/math] отличен от нуля. Такое уравнение имеет единственное решение.
[math]\triangleleft[/math]

Композиция

Пусть [math]A(s) = a_0 + a_1 s + a_2 s^2 + \dots[/math] и [math]B(s) = b_0 + b_1 s + b_2 s^2 + \dots[/math] — два формальных степенных ряда, причем [math]B(0) = b_0 = 0[/math].


Определение:
Композицией (подстановкой) (англ. composition) формальных степенных рядов [math]A[/math] и [math]B[/math] называется ряд [math]A(B(t)) = a_0 + a_1 b_1 t + (a_1 b_2 + a_2 b_1^2) t^2 + (a_1 b_3 + 2 a_2 b_1 b_2 + a_3 b_1^3) t^3 + \dots[/math].

Если, например, [math]B(t) = -t[/math], то [math]A(B(t)) = A(-t) = a_0 -a_1 t + a_2 t^2 - a_3 t^3 + \dots[/math].

Операция подстановки в случае, когда [math]B(0) \ne 0[/math], не определена. (При попытке подставить такой ряд возникает необходимость суммирования бесконечных числовых рядов).

Обратная

Теорема (об обратном формальном степенном ряде):
Пусть ряд [math]B(t) = b_0 + b_1 t + b_2 t^2 + b_3 t^3 + \dots[/math] таков, что [math]B(0) = b_0 = 0[/math], а [math]b_1 \ne 0[/math]. Тогда существуют такие ряды [math] A(s) = a_1 s + a_2 s^2 + a_3 s^3 + \dots[/math], [math]A(0) = 0[/math] и [math]C(u) = c_1 u + c_2 u^2 + c_3 u^3 + \dots[/math], [math]C(0) = 0[/math], что [math]A(B(t)) = t[/math] и [math]B(C(u)) = u[/math]. При этом, ряды [math]A[/math] и [math]C[/math] единственны. Производящие функции, соответствующие рядам [math]A[/math] и [math]C[/math], называются соответственно левой и правой обратной (англ. left (right) inverse) к производящей функции, соответствующей ряду [math]B[/math].
Доказательство:
[math]\triangleright[/math]
Докажем существование и единственность левой обратной функции. Доказательство для правой обратной аналогично.
Будем определять коэффициенты ряда [math]A[/math] последовательно. Коэффициент [math]a_1[/math] определяется из условия [math]a_1 b_1 = 1[/math], откуда [math]a_1 = \dfrac{1}{b_1}[/math].
Предположим теперь, что коэффициенты [math]a_1, a_2, \dots, a_n[/math] уже определены. Коэффициент [math]a_{n+1}[/math] определяется из условия [math]a_{n+1} b_1^{n+1} + \dots = 0[/math], где точками обозначен некоторый многочлен от [math]a_1, \dots, a_n[/math] и [math]b_1, \dots, b_n[/math]. Тем самым, условие представляет собой линейное уравнение на [math]a_{n+1}[/math], причем коэффициент [math]b_1^{n+1}[/math] при [math]a_{n+1}[/math] отличен от нуля. Такое уравнение имеет единственное решение, и теорема доказана.
[math]\triangleleft[/math]

См. также

Источники информации

  • Ландо С. К., Лекции о производящих функциях. — 3-е изд., испр. — М.: МЦНМО, 2007. — 144с. ISBN 978-5-94057-042-4