Разложение рациональной функции в ряд — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Примеры)
(Примеры)
Строка 43: Строка 43:
  
 
Представим функцию на сумму двух дробей, причем у первой в числителе будет полином степени <tex>0</tex>, а у второй степени <tex>1</tex>
 
Представим функцию на сумму двух дробей, причем у первой в числителе будет полином степени <tex>0</tex>, а у второй степени <tex>1</tex>
<center><tex>G(z)=\dfrac{8+4z}{1-z-z^2+z^3}=\dfrac{A}{(1+z)}+\dfrac{Bz+C}{(1-z)^2}.</tex></center>
+
<center><tex>G(z)=\dfrac{8+4z}{1-z-z^2+z^3}=\dfrac{A}{(1+z)}+\dfrac{Bz+C}{(1-z)^2},</tex></center>
 +
где <tex>A, B</tex> и <tex>C</tex> — некоторые константы. Для того, чтобы найти эти константы, нужно сложить дроби:
 +
<tex>\dfrac{A}{(1+z)}+\dfrac{Bz+C}{(1-z)^2}=\dfrac{A(1-z)^2+(Bz+C)(1+z)}{(1+z)(1-z)^2}=\dfrac{(A+B)z^2+(B+C-2A)z+(A+C)}{(1+z)(1-z)^2}=\frac{8+4z}{(1+z)(1-z)^2}.</tex>

Версия 15:46, 28 мая 2017

Определения

Определение:
Рациональная функция — это функция вида:

[math]G(z)=\dfrac{P(z)}{Q(z)}[/math],

где [math]P[/math] и [math]Q[/math] - полиномы.


Рациональные производящие функции получаются при решении линейных рекуррентных соотношений. По этой причине актуальной является задача о разложении рациональной функции в ряд по степеням переменной [math]z[/math].
Чтобы разложить дробь в ряд, необходимо разбить её на сумму элементарных дробей.

Определение:
Элементарными дробями будем называть дроби вида:

[math]\dfrac{A}{(x-a)^n}, \qquad \dfrac{Bx + C}{(x^2 + px + q)^m}[/math],

где [math] m, n \geqslant 1[/math], и [math]p^2 - 4q \lt 0[/math]


Затем, элементарные дроби сможем разложить в ряд, пользуясь формулами преобразования производящих функций и таблицей производящих функций.

Общий алгоритм

  1. Привести дробь [math]\dfrac{P(z)}{Q(z)}[/math] к такому виду, чтобы степень числителя была меньше степени знаменателя. Если [math]\deg(P) \gt \deg(Q)[/math], то можем записать [math]G(z)=\dfrac{P(z)}{Q(z)} = R(z)+\dfrac{P_0(z)}{Q(z)},[/math] где [math]\deg(P_0) \lt \deg(Q)[/math].
  2. Отыскать корни уравнения [math]Q(z)=0[/math] и разбить знаменатель на множители вида [math](z_s-z)^{k_s}[/math] (здесь [math]z_s[/math] — корень кратности [math]k_s[/math]).
  3. Записать сумму дробей, знаменатили которых будут иметь вид [math](z_s-z)^{k_s}[/math], а числители — полиномы с неопределёнными коэффициентами, имеющие степень [math]k_s-1[/math].
  4. Сложить выписанные дроби и сгруппировать слагаемые в числителе по степеням [math]z[/math].
  5. Приравнять полученные выражения с неопределёнными коэффициентами к соответсвующим коэффициентам полинома [math]P(z)[/math], составив, таким образом, систему линейных уравнений.
  6. Решить систему и получить значения неопределённых коэффициентов.

Примеры

Разложить в ряд функцию
[math] G(z)=\dfrac{8+4z}{1-z-z^2+z^3}.[/math]
Разложим знаменатель функции на множители
[math] 1-z-z^2+z^3=(1+z)(1-z)^2,[/math]
тогда
[math]G(z)=\dfrac{8+4z}{1-z-z^2+z^3}=\dfrac{8+4z}{(1+z)(1-z)^2}.[/math]

Представим функцию на сумму двух дробей, причем у первой в числителе будет полином степени [math]0[/math], а у второй степени [math]1[/math]

[math]G(z)=\dfrac{8+4z}{1-z-z^2+z^3}=\dfrac{A}{(1+z)}+\dfrac{Bz+C}{(1-z)^2},[/math]

где [math]A, B[/math] и [math]C[/math] — некоторые константы. Для того, чтобы найти эти константы, нужно сложить дроби: [math]\dfrac{A}{(1+z)}+\dfrac{Bz+C}{(1-z)^2}=\dfrac{A(1-z)^2+(Bz+C)(1+z)}{(1+z)(1-z)^2}=\dfrac{(A+B)z^2+(B+C-2A)z+(A+C)}{(1+z)(1-z)^2}=\frac{8+4z}{(1+z)(1-z)^2}.[/math]