|
|
Строка 52: |
Строка 52: |
| Набор вероятностей в теореме называется биномиальным распределением вероятностей. | | Набор вероятностей в теореме называется биномиальным распределением вероятностей. |
| }} | | }} |
− |
| |
− | == Пример ==
| |
− | Правильная монета подбрасывается <tex>10</tex> раз. Найти вероятность того, что герб выпадет от <tex>4</tex> до <tex>6</tex> раз.
| |
− |
| |
− | Вычислим отдельно вероятности получить <tex>4, 5</tex> и <tex>6</tex> гербов после десяти подбрасываний монеты.
| |
− |
| |
− | <tex >P(v_{10} = 4) =</tex> <tex> \dbinom{10}{4}\cdot \left(\dfrac{1}{2}\right)^ {4} \cdot \left(\dfrac{1}{2}\right)^ {10 - 4} </tex> <tex>~\approx ~ 0{.}205 </tex>
| |
− |
| |
− | <tex >P(v_{10} = 5) = </tex> <tex>\dbinom{10}{5}\cdot \left(\dfrac{1}{2}\right)^ {5} \cdot \left(\dfrac{1}{2}\right)^ {10 - 5}</tex><tex>~\approx ~ 0{.}246 </tex>
| |
− |
| |
− | <tex >P(v_{10} = 6) =</tex> <tex> \dbinom{10}{6}\cdot \left(\dfrac{1}{2}\right)^ {6} \cdot \left(\dfrac{1}{2}\right)^ {10 - 6}</tex> <tex>~\approx ~ 0{.}205 </tex>
| |
− |
| |
− | Сложим вероятности несовместных событий:
| |
− | <tex>P(4 \leqslant v_{10} \leqslant 6) = P(v_{10} = 4) + P(v_{10} = 5) + P(v_{10} = 6) ~\approx ~ 0{.}656 </tex>
| |
| | | |
| == Лемма == | | == Лемма == |
Строка 90: |
Строка 76: |
| | | |
| }} | | }} |
− |
| |
− | == Пример ==
| |
− | Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.
| |
− |
| |
− | Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие <tex> A_{k} </tex> состоит в том, что шесть очков впервые выпадет в испытании с номером <tex>k</tex>. По лемме, <tex > P(A_{k}) =</tex> <tex>\dfrac{1}{6} \cdot \left(\dfrac{5}{6}\right)^{k - 1} </tex>
| |
− | События <tex>A , B</tex>, означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий:
| |
− | <tex> A = A_{1} \cup A_{3} \cup A_{5} \cup . . . , B = B_{2}\cup B_{4} \cup B_{6} \cup . . .</tex>
| |
− | Вероятности этих объединений равны суммам вероятностей слагаемых:
| |
− |
| |
− | <tex > P(A) =</tex><tex> \dfrac{1}{6} + \dfrac{1}{6} \cdot\left(\dfrac{5}{6}\right)^{2} + \dfrac{1}{6}\cdot \left(\dfrac{5}{6}\right)^{4} ... = \dfrac{6}{11}.</tex> Теперь аналогичным образом посчитаю вероятность для события <tex>B</tex>
| |
− |
| |
− | <tex> P(B) =</tex> <tex>\dfrac{1}{6} \cdot\dfrac{5}{6}+ \dfrac{1}{6} \cdot\left(\dfrac{5}{6}\right)^{3} + \dfrac{1}{6}\cdot \left(\dfrac{5}{6}\right)^{5} ... = \dfrac{5}{11}.
| |
− | </tex>
| |
− |
| |
− | Рассмотрим схему независимых испытаний уже не с двумя, а с большим количеством возможных результатов в каждом испытании.
| |
| | | |
| == Полиномиальная схема == | | == Полиномиальная схема == |
Распределение Бернулли — описывает ситуации, где "испытание" имеет результат "успех" либо "неуспех", например, при бросании монеты, или при моделировании удачной или неудачной хирургической операции.
Биномиальное распределение
Говорят, что случайная величина [math]\xi[/math] имеет биномиальное распределение с параметрами [math]n \in \mathbb N[/math] и [math] p \in (0, 1)[/math] и пишут: [math] \xi \in \mathbb B_{n, p}[/math] если [math] \xi[/math] принимает значения [math]k = 0, 1, ... ,n[/math] с вероятностями [math]P(\xi = k) = [/math][math] \binom{n}{k} p^k (1 - p)^{n - k} [/math] . Случайная величина с таким распределением имеет смысл числа успехов в [math] n [/math] испытаниях схемы Бернулли с вероятностью успеха [math]p[/math].
Таблица распределения [math] \xi [/math] имеет вид
[math]\xi [/math]
|
0
|
1
|
...
|
[math]k[/math]
|
...
|
[math]n[/math]
|
[math]P[/math]
|
[math](1 - p) ^ n [/math]
|
[math]np(1 - p)^{n - 1}[/math]
|
...
|
[math]\binom{n}{k}p^k(1 - p)^{n - k} [/math]
|
...
|
[math] p^n [/math]
|
Определение
Определение: |
Схемой Бернулли (англ. Bernoulli scheme) называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью [math] p \in (0, 1)[/math] , а неудача — с вероятностью [math] q = 1 - p [/math]. |
Случайная величина [math]\xi[/math] с таким распределением равна числу успехов в одном испытании схемы Бернулли с вероятностью [math]p[/math] успеха : ни одного успеха или один успех. Функция распределения [math] \xi[/math] имеет вид
[math]
F_{\xi}(x) = P(\xi \lt x) \begin{cases}
0, & x\leqslant 0 \\
1 - p, & 0 \lt x \leqslant 1\\
1, & x \gt 1
\end{cases}
[/math]
Обозначим через [math] v_{n} [/math] число успехов, случившихся в [math] n[/math] испытаниях схемы Бернулли. Эта случайная величина может принимать целые значения от [math]0[/math] до [math]n[/math] в зависимости от результатов испытаний. Например, если все [math]n [/math] испытаний завершились неудачей, то величина [math] v_{n} [/math] равна нулю.
Теорема: |
Для любого [math]k = 0, 1, . . . , n [/math] вероятность получить в [math]n[/math] испытаниях [math]k[/math] успехов равна [math] P(v_{n} = k ) = [/math] [math] \binom{n}{k} [/math][math] p^{k} q^{n - k}[/math] |
Доказательство: |
[math]\triangleright[/math] |
Событие [math]\{A = v_{n} = k\}[/math] означает, что в [math]n[/math] испытаниях схемы Бернулли произошло ровно [math]k[/math] успехов. Рассмотрим один элементарный исход из события [math]A[/math]: когда первые [math]k[/math] испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна [math] p ^ {k} [/math] [math] (1-p) ^ {n - k} [/math] Другие элементарные исходы из события [math]A[/math] отличаются лишь расположением [math]k[/math] успехов на [math]n[/math] местах. Есть ровно [math]\binom{n}{k}[/math] cпособов расположить [math]k[/math] успехов на [math]n[/math] местах. Поэтому событие [math]A[/math] состоит из [math]\binom{n}{k}[/math] элементарных исходов, вероятность каждого из которых равна [math] p ^ {k} [/math] [math] q ^ {n - k}[/math]
Набор вероятностей в теореме называется биномиальным распределением вероятностей. |
[math]\triangleleft[/math] |
Лемма
Лемма: |
Вероятность того, что первый успех произойдёт в испытании с номером [math]k \in \mathbb N = {1, 2, 3, . . .},[/math] равна [math]P(r = k) = pq^ {k - 1} [/math] |
Доказательство: |
[math]\triangleright[/math] |
Вероятность первым [math] k - 1 [/math] испытаниям завершиться неудачей, а последнему — успехом, равна [math] P(r = k) = pq^{k - 1} [/math] |
[math]\triangleleft[/math] |
Теорема: |
Пусть [math] P(r = k) = pq^{k - 1} [/math] для любого [math] k \in \mathbb N [/math]. Тогда для любых неотрицательных целых [math]n [/math] и [math]k[/math] имеет место равенство: [math] P(r \gt n + k | r \gt n) = P(r \gt k) [/math] |
Доказательство: |
[math]\triangleright[/math] |
По определению условной вероятности,
[math] P(r \gt n + k | r \gt n) = [/math] [math] \dfrac{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \dfrac{P(r \gt n + k)}{P(r \gt n)} [/math] [math]\left(1\right)[/math]
Последнее равенство верно в силу того, что событие [math] {r \gt n + k} [/math] влечёт событие [math]{r \gt n}[/math], поэтому их пересечением будет событие [math] {r \gt n + k}[/math]. Найдём для целого [math] m \geqslant 0[/math] вероятность [math] P(r \gt m)[/math] : событие [math] r \gt m [/math] означает,что в схеме Бернулли первые [math]m[/math] испытаний завершились «неудачами», то есть его вероятность равна [math] q^{m}[/math]. Возвращаясь к формуле [math]\left(1\right)[/math], эта случайная величина равна [math] P(r \gt n + k | r \gt n) = [/math] [math] \dfrac{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \dfrac{q^{n + k}} {q^{n}} =[/math] [math] q^{k} = P(r \gt k)[/math]. |
[math]\triangleleft[/math] |
Полиномиальная схема
Обычная формула Бернулли применима на случай когда при каждом испытании возможно одно из двух исходов.
Рассмотрим случай, когда в одном испытании возможны [math] m[/math] исходов: [math]1, 2, . . . , m,[/math] и [math]i[/math]-й исход в одном испытании случается
с вероятностью [math] p_{i}[/math] , где [math]p_{1} + . . . + p_{m} = 1[/math].
Теорема: |
Обозначим через [math]P(n_{1}, . . . , n_{m})[/math] вероятность того, что в [math]n[/math] независимых испытаниях первый исход случится [math] n_{1}[/math] раз, второй исход — [math]n_{2}[/math] раз, и так далее, наконец, [math]m[/math]-й исход — [math]n_{m}[/math] раз тогда верна формула:
[math] P(n_{1}, . . . , n_{m}) = [/math] [math] \dfrac{n!}{n_{1}! \cdot n_{2}! .. \cdot n_{m}!}\cdot {p_{1}}^{n_{1}}\cdot... \cdot {p_{m}}^{n_{m}}
[/math] |
Доказательство: |
[math]\triangleright[/math] |
Рассмотрим один элементарный исход, благоприятствующий выпадению [math]n_{1}[/math] единиц, [math] n_{2}[/math] двоек, и так далее.
Это результат [math]n[/math] экспериментов, когда все нужные исходы появились в некотором заранее заданном порядке. Вероятность такого результата равна произведению вероятностей [math]p_{n_{1}}...p_{n_{m}}[/math]. Остальные благоприятные исходы отличаются лишь расположением чисел [math]1, 2, . . . , m[/math] на [math]n[/math] местах. Число таких исходов равно числу способов расположить на [math]n[/math] местах [math]n_{1}[/math] единиц, [math]n_{2}[/math] двоек,и так далее Это число равно
[math]\dbinom{n}{n_1}\cdot\dbinom{n - n_1 - n_2}{n_2} \cdot\dbinom{n - n_1 - n_2- n_3}{n_3} ...\cdot \dbinom{n - n_1 - n_2.. - n_{m -1}}{n_m} = \dfrac {n!}{n_{1}! \cdot n_{2}! .. \cdot n_{m}!}
[/math] |
[math]\triangleleft[/math] |
Примеры
Пример 1
Правильная монета подбрасывается [math]10[/math] раз. Найти вероятность того, что герб выпадет от [math]4[/math] до [math]6[/math] раз.
Вычислим отдельно вероятности получить [math]4, 5[/math] и [math]6[/math] гербов после десяти подбрасываний монеты.
[math]P(v_{10} = 4) =[/math] [math] \dbinom{10}{4}\cdot \left(\dfrac{1}{2}\right)^ {4} \cdot \left(\dfrac{1}{2}\right)^ {10 - 4} [/math] [math]~\approx ~ 0{.}205 [/math]
[math]P(v_{10} = 5) = [/math] [math]\dbinom{10}{5}\cdot \left(\dfrac{1}{2}\right)^ {5} \cdot \left(\dfrac{1}{2}\right)^ {10 - 5}[/math][math]~\approx ~ 0{.}246 [/math]
[math]P(v_{10} = 6) =[/math] [math] \dbinom{10}{6}\cdot \left(\dfrac{1}{2}\right)^ {6} \cdot \left(\dfrac{1}{2}\right)^ {10 - 6}[/math] [math]~\approx ~ 0{.}205 [/math]
Сложим вероятности несовместных событий:
[math]P(4 \leqslant v_{10} \leqslant 6) = P(v_{10} = 4) + P(v_{10} = 5) + P(v_{10} = 6) ~\approx ~ 0{.}656 [/math]
Пример 2
Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.
Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие [math] A_{k} [/math] состоит в том, что шесть очков впервые выпадет в испытании с номером [math]k[/math]. По лемме, [math] P(A_{k}) =[/math] [math]\dfrac{1}{6} \cdot \left(\dfrac{5}{6}\right)^{k - 1} [/math]
События [math]A , B[/math], означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий:
[math] A = A_{1} \cup A_{3} \cup A_{5} \cup . . . , B = B_{2}\cup B_{4} \cup B_{6} \cup . . .[/math]
Вероятности этих объединений равны суммам вероятностей слагаемых:
[math] P(A) =[/math][math] \dfrac{1}{6} + \dfrac{1}{6} \cdot\left(\dfrac{5}{6}\right)^{2} + \dfrac{1}{6}\cdot \left(\dfrac{5}{6}\right)^{4} ... = \dfrac{6}{11}.[/math] Теперь аналогичным образом посчитаю вероятность для события [math]B[/math]
[math] P(B) =[/math] [math]\dfrac{1}{6} \cdot\dfrac{5}{6}+ \dfrac{1}{6} \cdot\left(\dfrac{5}{6}\right)^{3} + \dfrac{1}{6}\cdot \left(\dfrac{5}{6}\right)^{5} ... = \dfrac{5}{11}.
[/math]
Пример 3
Игральная кость подбрасывается пятнадцать раз. Найти вероятность того, что выпадет ровно десять троек и три единицы.
Здесь каждое испытание имеет три, а не два исхода: выпадение тройки, выпадение единицы, выпадение любой другой грани.
Так как вероятности выпадения тройки и единицы равны по [math]\dfrac{1}{6}[/math], а вероятность третьего исхода (выпала любая другая грань) [math]\dfrac{4}{6}[/math], то вероятность получить десять троек, три единицы и ещё два других очка равна
[math] P(10, 3, 2) = [/math] [math] \dfrac{15!}{10! \cdot 3! \cdot 2!}\cdot \left(\dfrac{1}{6}\right)^{10} \cdot \left(\dfrac{1}{6}\right)^{3}\cdot\left(\dfrac{4}{6}\right)^{2}
[/math]
См. также
Источники информации
- Н.И Чернова Теория вероятности — Новосибирск, 2009.