Произведение Адамара рациональных производящих функций — различия между версиями
(Произведение Адамара, Начало) |
(Произведение Адамара, Начало) |
||
Строка 15: | Строка 15: | ||
Выражение в правой части равенства называется квазимногочленом от переменной <tex>n</tex>.}} | Выражение в правой части равенства называется квазимногочленом от переменной <tex>n</tex>.}} | ||
===Доказательство=== | ===Доказательство=== | ||
+ | |||
+ | <tex>\Rightarrow</tex> | ||
+ | |||
Заметим прежде всего, что производящая функция <tex>(1 - q s)^{-k}</tex> имеет вид | Заметим прежде всего, что производящая функция <tex>(1 - q s)^{-k}</tex> имеет вид | ||
− | + | ||
− | + | <tex>(1 - q s)^{-k} = 1 - {-k \choose 1} q s + {-k \choose 2} q^{2} s^{2} - {-k\choose 3} q^{3} s^{3} + \dots = </tex> | |
− | + | :::<tex> = 1+ {k \choose 1} q s + {k + 1 \choose 2} q^{2} s^{2} + {k + 2 \choose 3} q^{3} s^{3} + \dots =</tex> | |
+ | :::<tex> = 1 + {k \choose k - 1} q s + {k + 1 \choose k - 1} q^{2} s^{2} + {k + 2 \choose k - 1} q^{3} s^{3} + \dots</tex> | ||
+ | |||
Коэффициент при <tex>s^n</tex> в этой производящей функции равен | Коэффициент при <tex>s^n</tex> в этой производящей функции равен | ||
+ | |||
+ | <tex>\frac{(n + 1)(n + 2)\dots(n + k - 1)}{(k - 1)!} q^{n} = P_{k - 1}(n) q^{n}</tex>, | ||
+ | |||
+ | где <tex>P_{k - 1}(n)</tex> {{---}} многочлен от <tex>n</tex> степени <tex>k - 1</tex>. Всякая рациональная функция от переменной <tex>s</tex> представляется в виде линейной комбинации многочлена и элементарных дробей вида <tex>(1 - q_i s)^{-k_i}</tex>, поэтому коэффициенты соответствующей производящей функции являются квазимногочленами. | ||
+ | |||
+ | <tex>\Leftarrow</tex> | ||
+ | |||
+ | Наоборот, предположим, что коэффициенты производящей функции, начиная с некоторого номера, представляются в виде квазимногочлена. Покажем, что в случае квазимногочлена <tex>p(n) q^{n}</tex> соответствующая производящая функция рациональна. Пусть степень многочлена <tex>p</tex> равна <tex>k - 1</tex>. Многочлены <tex>P_0, P_1, \dots, P_{k - 1}</tex>, определенные равенством (2.11PRAVKAAAA), образуют базис в пространстве многочленов степени не выше <tex> k - 1</tex>. Действительно, любая последовательность многочленов степеней <tex>0, 1, \dots, k - 1</tex> образует базис в этом пространстве. Поэтому многочлен <tex>p</tex> представляется в виде линейной комбинации многочленов <tex>P_i</tex> и соответствующая производящая функция есть просто линейная комбинация функций <tex>(1 - q s)^{-j}</tex>, <tex>j = 0, 1, \dots, k - 1</tex>. | ||
+ | Для произвольного квазимногочлена мы получаем линейную комбинацию функций такого вида при разных <tex>q_i</tex>.Лемма доказана. |
Версия 18:14, 10 июня 2017
Одно из наиболее привлекательных свойств рациональных производящих функций — их замкнутость относительно произведения Адамара.
Определение: |
Произведением Адамара (англ. Hadamard product) производящих функций | и называется производящая функция .
Таким образом, произведение Адамара двух последовательностей — это последовательность, состоящая из почленных произведений соответственных членов этих последовательностей. Необходимость в производящей функции для произведения Адамара уже встречалась: в задаче о числе счастливых билетов нам понадобилось вычислить сумму квадратов коэффициентов производящего многочлена
. Эта необходимость возникает при перечислении пар объектов одинакового порядка: если число объектов первого типа равно , а число объектов второго типа то число пар объектов, составленных из элементов первого и второго типа, равно .Теорема
Теорема: |
Произведение Адамара двух рациональных производящих функций рационально. |
Для доказательства этой теоремы нам понадобится новая характеризация рациональных производящих функций.
Лемма: |
Производящая функция для последовательности рациональна тогда и только тогда, когда существуют такие числа и такие многочлены , что начиная с некоторого номера
Выражение в правой части равенства называется квазимногочленом от переменной . |
Доказательство
Заметим прежде всего, что производящая функция
имеет вид
Коэффициент при
в этой производящей функции равен,
где
— многочлен от степени . Всякая рациональная функция от переменной представляется в виде линейной комбинации многочлена и элементарных дробей вида , поэтому коэффициенты соответствующей производящей функции являются квазимногочленами.
Наоборот, предположим, что коэффициенты производящей функции, начиная с некоторого номера, представляются в виде квазимногочлена. Покажем, что в случае квазимногочлена
соответствующая производящая функция рациональна. Пусть степень многочлена равна . Многочлены , определенные равенством (2.11PRAVKAAAA), образуют базис в пространстве многочленов степени не выше . Действительно, любая последовательность многочленов степеней образует базис в этом пространстве. Поэтому многочлен представляется в виде линейной комбинации многочленов и соответствующая производящая функция есть просто линейная комбинация функций , . Для произвольного квазимногочлена мы получаем линейную комбинацию функций такого вида при разных .Лемма доказана.