Centroid decomposition — различия между версиями
(→Введение) |
(→Введение) |
||
Строка 3: | Строка 3: | ||
== Введение == | == Введение == | ||
Рассмотрим 2 задачи на обычном массиве (в дальнейшем мы будем их обобщать на случай дерева): | Рассмотрим 2 задачи на обычном массиве (в дальнейшем мы будем их обобщать на случай дерева): | ||
− | + | Задача 1 : | |
{{Задача | {{Задача | ||
− | |definition = Есть прямая дорога, на которой расположены <tex>n</tex> городов. В некоторых городах есть госпитали, которые могут принимать больных. Поступают запросы вида : дан город <tex>v</tex>, в котором находится больной и требуется найти такой город <tex>u</tex>, что <tex>abs{u - v}</tex> минимально возможное. | + | |definition = Есть прямая дорога, на которой расположены <tex>n</tex> городов. В некоторых городах есть госпитали, которые могут принимать больных. Поступают запросы вида : |
+ | 1) дан город <tex>v</tex>, в котором находится больной и требуется найти такой город <tex>u</tex>, что <tex>abs{u - v}</tex> минимально возможное. | ||
+ | 2) дан город <tex>v</tex> и сказано, что больше он не будет принимать больных | ||
+ | 3) дан город <tex>v</tex> и сказано, что теперь он может принимать больных | ||
}} | }} | ||
− | + | Задача 2: | |
− | |||
{{Задача | {{Задача | ||
− | |definition = Есть массив <tex>a[]</tex> из <tex>n</tex> элементов и числа <tex>W</tex> и <tex>l</tex> . Требуется найти количество пар <tex>(i, j)</tex> индексов массива, таких что <tex>|j - i| <= l </tex> и <tex>\sum_{i=0}^{n - 1} [a[i]] <= W</tex>. | + | |definition = Есть массив <tex>a[]</tex> положительных целых чисел из <tex>n</tex> элементов и числа <tex>W >= 0</tex> и <tex>l</tex> . Требуется найти количество пар <tex>(i, j)</tex> индексов массива, таких что <tex>|j - i| <= l </tex> и <tex>\sum_{i=0}^{n - 1} [a[i]] <= W</tex>. |
}} | }} | ||
+ | Для начала решим обе задачи. Вторая задача решается методом [[Сортировка_слиянием|qevide&conqure (рус. разделяй и властвуй)]] - давайте разделим массив <tex>a[0...n-1]</tex> на 2 массива <tex>a[0...\frac{n}{2} - 1]</tex> и <tex>a[\frac{n}{2}...n-1]</tex> и рекурсивно решим задачу для каждого из них. Осталось научиться находить количество искомых пар <tex>(i, j)</tex>, таких что <tex>i < \frac{n}{2}, j >= \frac{n}{2}</tex>. Для этого воспользуемся другой известной техникой - методом двух указателей. Посчитаем массив префиксных сумм для правой половины <tex>pref[i] = \sum_{j=n/2}^{i} [a[j]]</tex> и суффиксных (<tex>suf[i] = \sum_{j=i}^{n/2 + 1} [a[i]]</tex>) - для левой. Заведем два указателя (<tex>p1</tex> и <tex>p2</tex>). Изначально установим <tex>p1 = \frac{n}{2} - l + 1, p2 = \frac{n}{2}</tex>. Пока <tex>p2 > \frac{n}{2}</tex> и <tex>p2 > </tex>. | ||
== Статическая центроидная декомпозиция == | == Статическая центроидная декомпозиция == |
Версия 23:49, 13 июня 2017
Centroid decomposition (рус. центроидная декомпозиция) - это структура данных, позволяющая отвечать на запросы на дереве. Чаще всего это запросы, связанные с нахождением функции на вершинах, связанных неравенством на расстояние между ними в дереве. Также иногда применяется для запросов на путях в дереве.
Содержание
Введение
Рассмотрим 2 задачи на обычном массиве (в дальнейшем мы будем их обобщать на случай дерева): Задача 1 :
Задача: |
Есть прямая дорога, на которой расположены 1) дан город 3) дан город , в котором находится больной и требуется найти такой город , что минимально возможное. 2) дан город и сказано, что больше он не будет принимать больных и сказано, что теперь он может принимать больных | городов. В некоторых городах есть госпитали, которые могут принимать больных. Поступают запросы вида :
Задача 2:
Задача: |
Есть массив | положительных целых чисел из элементов и числа и . Требуется найти количество пар индексов массива, таких что и .
Для начала решим обе задачи. Вторая задача решается методом qevide&conqure (рус. разделяй и властвуй) - давайте разделим массив на 2 массива и и рекурсивно решим задачу для каждого из них. Осталось научиться находить количество искомых пар , таких что . Для этого воспользуемся другой известной техникой - методом двух указателей. Посчитаем массив префиксных сумм для правой половины и суффиксных ( ) - для левой. Заведем два указателя ( и ). Изначально установим . Пока и .