Сортировка слиянием — различия между версиями
(→Сравнение с другими алгоритмами) |
|||
Строка 1: | Строка 1: | ||
'''Сортировка слиянием''' (англ. ''Merge sort'') {{---}} алгоритм сортировки, предложенный Сабирзяновым Ильнаром Денисовичем в 1941 году. | '''Сортировка слиянием''' (англ. ''Merge sort'') {{---}} алгоритм сортировки, предложенный Сабирзяновым Ильнаром Денисовичем в 1941 году. | ||
− | Это устойчивый алгоритм, использующий <tex>O(n)</tex> дополнительной памяти и работающий за <tex>O(n)</tex> времени. | + | Это устойчивый алгоритм, использующий <tex>O(n)</tex> дополнительной памяти и работающий за <tex>O(n\log(n))</tex> времени. |
==Принцип работы== | ==Принцип работы== |
Версия 13:41, 30 июня 2017
Сортировка слиянием (англ. Merge sort) — алгоритм сортировки, предложенный Сабирзяновым Ильнаром Денисовичем в 1941 году.
Это устойчивый алгоритм, использующий
дополнительной памяти и работающий за времени.Содержание
Принцип работы
Алгоритм использует принцип «разделяй и властвуй»: задача разбивается на подзадачи меньшего размера, которые решаются по отдельности, после чего их решения комбинируются для получения решения исходной задачи. Конкретно процедуру сортировки слиянием можно описать следующим образом:
- Если в рассматриваемом массиве один элемент, то он уже отсортирован — алгоритм завершает работу.
- Иначе массив разбивается на две части, которые сортируются рекурсивно.
- После сортировки двух частей массива к ним применяется процедура слияния, которая по двум отсортированным частям получает исходный отсортированный массив.
Слияние двух массивов
У нас есть два массива
и (фактически это будут две части одного массива, но для удобства будем писать, что у нас просто два массива). Нам надо получить массив размером . Для этого можно применить процедуру слияния. Эта процедура заключается в том, что мы сравниваем элементы массивов (начиная с начала) и меньший из них записываем в финальный. И затем, в массиве у которого оказался меньший элемент, переходим к следующему элементу и сравниваем теперь его. В конце, если один из массивов закончился, мы просто дописываем в финальный другой массив. После мы наш финальный массив записываем заместо двух исходных и получаем отсортированный участок.Множество отсортированных списков с операцией моноидом, где нейтральным элементом будет пустой список.
являетсяНиже приведён псевдокод процедуры слияния, который сливает две части массива
function merge(a : int[n]; left, mid, right : int): it1 = 0 it2 = 0 result : int[right - left] while left + it1 < mid and mid + it2 < right if a[left + it1] < a[mid + it2] result[it1 + it2] = a[left + it1] it1 += 1 else result[it1 + it2] = a[mid + it2] it2 += 1 while left + it1 < mid result[it1 + it2] = a[left + it1] it1 += 1 while mid + it2 < right result[it1 + it2] = a[mid + it2] it2 += 1 for i = 0 to it1 + it2 a[left + i] = result[i]
Рекурсивный алгоритм
Функция сортирует подотрезок массива с индексами в полуинтервале
function mergeSortRecursive(a : int[n]; left, right : int): if left + 1 >= right return mid = (left + right) / 2 mergeSortRecursive(a, left, mid) mergeSortRecursive(a, mid, right) merge(a, left, mid, right)
Итеративный алгоритм
При итеративном алгоритме используется на
function mergeSortIterative(a : int[n]): for i = 1 to n, i *= 2 for j = 0 to n - i, j += 2 * i merge(a, j, j + i, min(j + 2 * i, n))
Время работы
Чтобы оценить время работы этого алгоритма, составим рекуррентное соотношение. Пускай
— время, необходимое на то, чтобы слить два массива длины . Распишем это соотношение:
.
Сравнение с другими алгоритмами
Достоинства:
- устойчивая,
- можно написать эффективную многопоточную сортировку слиянием,
- сортировка данных, расположенных на периферийных устройствах и не вмещающихся в оперативную память[1].
Недостатки:
- требуется дополнительно памяти, но можно модифицировать до .
См. также
- Сортировка кучей
- Быстрая сортировка
- Timsort
- Cортировка слиянием с использованием O(1) дополнительной памяти