Числа Белла — различия между версиями
(→Разделение набора) |
|||
Строка 3: | Строка 3: | ||
}} | }} | ||
Числа Белла начинаются с ''B''<sub>0</sub> = ''B''<sub>1</sub> = 1 и образуют последовательность : | Числа Белла начинаются с ''B''<sub>0</sub> = ''B''<sub>1</sub> = 1 и образуют последовательность : | ||
− | :1, | + | :1, 1,2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, 1382958545, 10480142147, 82864869804, 682076806159, 5832742205057, ... |
− | ''n''- элемент чисел Белла, ''B<sub>n</sub>'', показывает количество различных способов разбиения множества, которое имеет не менее ''n'' элементов, т.е. количеству [[отношений эквивалентности]] в нем. | + | ''n''- элемент чисел Белла, ''B<sub>n</sub>'', показывает количество различных способов разбиения множества, которое имеет не менее ''n'' элементов, т.е. количеству [[отношений эквивалентности|Определение_отношение_эквивалентности]] в нем. |
Вне математики, похожие числа показывают количество различных схем рифмовки для ''n''-й строфы стихотворения. | Вне математики, похожие числа показывают количество различных схем рифмовки для ''n''-й строфы стихотворения. | ||
==Подсчет== | ==Подсчет== | ||
===Разделение набора=== | ===Разделение набора=== | ||
− | [[File: | + | [[File:Order.png|right|Разбиения множеств могут быть расположены частично-упорядоченном виде. Каждое подмножество длины n использует одно из подмножеств длины n-1.]] |
− | [[File: | + | [[File:XxxCircles.png|thumb|52 разбиения множества из 5 элементов]] |
''B''<sub>''n''</sub> количество разбиений множества размера ''n''. Разбиение множества ''S'' определяется как совокупность непустых, попарно непересекающихся подмножеств множества ''S''. Например, ''B''<sub>3</sub> = 5, потому что множество, состоящее их 3 элементов {''a'', ''b'', ''c''} может быть разделено 5 различным способами: | ''B''<sub>''n''</sub> количество разбиений множества размера ''n''. Разбиение множества ''S'' определяется как совокупность непустых, попарно непересекающихся подмножеств множества ''S''. Например, ''B''<sub>3</sub> = 5, потому что множество, состоящее их 3 элементов {''a'', ''b'', ''c''} может быть разделено 5 различным способами: | ||
Строка 18: | Строка 18: | ||
:{ {''a'', ''b'', ''c''} }. | :{ {''a'', ''b'', ''c''} }. | ||
− | ''B''<sub>0</sub> является 1, т.к. существует только одно возможное разбиение пустого множества. Каждый элемент пустого множества является непустым множеством и их объединение является пустым множеством. Таким образом, пустое множество может разбиваться только на само себя. Как было обозначено выше, мы не рассматриваем ни порядок подмножеств, ни порядок элементов в каждом их них. Это означает, что данные разбиения являются идентичными: | + | ''B''<sub>0</sub> является 1, т.к. существует только одно возможное разбиение пустого множества. Каждый элемент пустого множества является непустым множеством и их объединение является пустым множеством. Таким образом, пустое множество может разбиваться только на само себя. |
+ | Как было обозначено выше, мы не рассматриваем ни порядок подмножеств, ни порядок элементов в каждом их них. Это означает, что данные разбиения являются идентичными: | ||
:{ {''b''}, {''a'', ''c''} } | :{ {''b''}, {''a'', ''c''} } | ||
:{ {''a'', ''c''}, {''b''} } | :{ {''a'', ''c''}, {''b''} } | ||
Строка 27: | Строка 28: | ||
===Факторизации=== | ===Факторизации=== | ||
Если число ''N'' является свободным от квадратов, то ''B<sub>n</sub>'' показывает количество различных мультипликативных | Если число ''N'' является свободным от квадратов, то ''B<sub>n</sub>'' показывает количество различных мультипликативных | ||
− | Если число ''N'' является квадратичным положительным целым числом (является произведением некоторого числа '' n'' различных простых чисел), то ''B<sub>n</sub> дает число различных мультипликативных разбиений ''N''. Это является факторизацией ''N'' в числа большие, чем 1, | + | Если число ''N'' является квадратичным положительным целым числом (является произведением некоторого числа '' n'' различных простых чисел), то ''B<sub>n</sub> дает число различных мультипликативных разбиений ''N''. Это является факторизацией ''N'' в числа большие, чем 1(рассматривая две факторизации как идентичные, если они имеют одинаковые факторы в другом порядке.) подтверждает это наблюдение Сильвио Минетоле''Principii di Analisi Combinatoria'' (1909).</ref> Например, 30 является произведением 3 простых чисел 2, 3, and 5, и имеет ''B''<sub>3</sub> = 5 факторизаций: |
:<tex>30 = 2\times 15=3\times 10=5\times 6=2\times 3\times 5</tex> | :<tex>30 = 2\times 15=3\times 10=5\times 6=2\times 3\times 5</tex> | ||
===Схемы рифмовки=== | ===Схемы рифмовки=== | ||
Строка 34: | Строка 35: | ||
{{main article|Треугольник Пирса}} | {{main article|Треугольник Пирса}} | ||
[[Image:BellNumberAnimated.gif|right|thumb| Треугольное множество, правая диагональная последовательность которого состоит из чисел Белла]] | [[Image:BellNumberAnimated.gif|right|thumb| Треугольное множество, правая диагональная последовательность которого состоит из чисел Белла]] | ||
− | Числа Белла могут быть с легкостью вычислены с помощью треугольника Белла, который также называют массивом Айткена или треугольником Пирса. | + | Числа Белла могут быть с легкостью '''вычислены''' с помощью '''треугольника Белла''', который также называют массивом Айткена или треугольником Пирса. |
# Начнем с единицы. Помещаем ее в верхнюю строку. (<tex> x_{0,1} = 1 </tex>) | # Начнем с единицы. Помещаем ее в верхнюю строку. (<tex> x_{0,1} = 1 </tex>) | ||
# Каждая новая строка должна начинаться с крайнего правого элемента прошлой строки. (<tex>x_{i,1} \leftarrow x_{i-1, r}</tex> где ''r'' последний элемент (''i''-1)-й строки) | # Каждая новая строка должна начинаться с крайнего правого элемента прошлой строки. (<tex>x_{i,1} \leftarrow x_{i-1, r}</tex> где ''r'' последний элемент (''i''-1)-й строки) | ||
Строка 108: | Строка 109: | ||
*[http://www.tex.ucsd.edu/~ebender/CombText/ch-11.pdf Bender Edward A.Williamson, S. Gill, Set Partitions, 319–320, 2006] | *[http://www.tex.ucsd.edu/~ebender/CombText/ch-11.pdf Bender Edward A.Williamson, S. Gill, Set Partitions, 319–320, 2006] | ||
* [[wikipedia:com:Bells numbers| Bells numbers]] | * [[wikipedia:com:Bells numbers| Bells numbers]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Примeчания== | ==Примeчания== | ||
<references/> | <references/> |
Версия 15:18, 8 октября 2017
Определение: |
В комбинаторной математике числа Белла показывают количество возможных способов разбиения множества из nэлементов на непустые подмножества. Эти числа изучались математиками с 17-го века. Их корни уходят в средневековую Японию. Названы в честь Эрика Темпла Белла, который описал их в 1930-х годах. |
Числа Белла начинаются с B0 = B1 = 1 и образуют последовательность :
- 1, 1,2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, 1382958545, 10480142147, 82864869804, 682076806159, 5832742205057, ...
n- элемент чисел Белла, Bn, показывает количество различных способов разбиения множества, которое имеет не менее n элементов, т.е. количеству Определение_отношение_эквивалентности в нем. Вне математики, похожие числа показывают количество различных схем рифмовки для n-й строфы стихотворения.
Содержание
Подсчет
Разделение набора
Bn количество разбиений множества размера n. Разбиение множества S определяется как совокупность непустых, попарно непересекающихся подмножеств множества S. Например, B3 = 5, потому что множество, состоящее их 3 элементов {a, b, c} может быть разделено 5 различным способами:
- { {a}, {b}, {c} }
- { {a}, {b, c} }
- { {b}, {a, c} }
- { {c}, {a, b} }
- { {a, b, c} }.
B0 является 1, т.к. существует только одно возможное разбиение пустого множества. Каждый элемент пустого множества является непустым множеством и их объединение является пустым множеством. Таким образом, пустое множество может разбиваться только на само себя. Как было обозначено выше, мы не рассматриваем ни порядок подмножеств, ни порядок элементов в каждом их них. Это означает, что данные разбиения являются идентичными:
- { {b}, {a, c} }
- { {a, c}, {b} }
- { {b}, {c, a} }
- { {c, a}, {b} }.
В противном случае, если различные упорядочивания множеств считаются различными разбиениями, тогда количество таких упорядоченных разбиений называются упорядоченными числами Белла.
Факторизации
Если число N является свободным от квадратов, то Bn показывает количество различных мультипликативных Если число N является квадратичным положительным целым числом (является произведением некоторого числа n различных простых чисел), то Bn дает число различных мультипликативных разбиений N. Это является факторизацией N в числа большие, чем 1(рассматривая две факторизации как идентичные, если они имеют одинаковые факторы в другом порядке.) подтверждает это наблюдение Сильвио МинетолеPrincipii di Analisi Combinatoria (1909).</ref> Например, 30 является произведением 3 простых чисел 2, 3, and 5, и имеет B3 = 5 факторизаций:
Схемы рифмовки
Числа Белла показывают количество схем рифмовки n-строфы. Схема рифмы описывает, какие строки рифмуются друг с другом, и поэтому может быть истолковано как разбиение множества строк в подмножества рифм. Таким образом, 15 возможных четверостиший схемами рифмовки являются: AAAA, AAAB, AABA, AABB, AABC, ABAA, ABAB, ABAC, ABBA, ABBB, ABBC, ABCA, ABCB, ABCC, and ABCD.Шаблон:Sfn
Вычисление с помощью треугольника Пирса
Числа Белла могут быть с легкостью вычислены с помощью треугольника Белла, который также называют массивом Айткена или треугольником Пирса.
- Начнем с единицы. Помещаем ее в верхнюю строку. ( )
- Каждая новая строка должна начинаться с крайнего правого элемента прошлой строки. ( где r последний элемент (i-1)-й строки)
- Определим остальные элементы строки
- Повторяем пункт 3, пока )
- Крайнее левое число данной строки является числом Белла для этой строки. ( )
Here are the first five rows of the triangle constructed by these rules:
1 1 2 2 3 5 5 7 10 15 15 20 27 37 52
Свойства
Формулы суммирования
Числа Белла удовлетворяют рекуррентному соотношению c участием биномиальных коэффициентов s:
Другая формула суммирования представляет каждое число Белла как сумму чисел Стирлинга второго рода:
Число Стирлинга
является количеством способов разбиения набора элементов n в ровно k непустых подмножеств. Michael Spivey получил формулу, которая объединяет оба эти суммирования:Производная функция
Экспоненциальной производящей функцией числе Белла является:
Суммирование используется для определения экспоненциальной производящей функции для любой последовательности чисел. Правая часть является результатом выполнения суммирования в конкретном случае.
Моменты распределения вероятностей
Числа Белла удовлетворяют формуле ДобинскогоШаблон:SfnШаблон:SfnШаблон:Sfn
Эта формула может быть получена за счет расширения экспоненциальной производящей функции, используя ряд Тейлора для экспоненциальной функции, а затем собирая условия с аналогичным показателем экспоненты. Это позволяет интерпретировать Bn как n-й момент Пуассоновского распределения с ожидаемым значением 1.
Интегральное представление
Применение интегральной формулы Коши для экспоненциальной производящей функции дает комплексное интегральное представление:
Log-concavity
Числа Белла формируют логарифмически выпуклую последовательность. Деление их на факториал, Bn/n!, дает логарифмически выпуклую последовательность.sequence.
Темпы роста
Известно несколько асимптотических формул для чисел Белла. В Шаблон:Harvtxt были установлены следующие границы:
- для всех положительных чисел ;
кроме того, если
затем для всех ,где
и Числа Белла могут быть аппроксимированы с помощью функции Ламберта Вт, данная функция имеет такой же темп роста, как логарифм, какMoser Wyman установил расширение:
Асимптотическое выражение
Было установлено де Брайном в 1981 году. Шаблон:Reflist
References
- [Nobuhiro Izumi Hui-Hsiung "Acta Applicandae Texematicae",79–87.Bell numbers, log-concavity, and log-convexity 2000]
- [Aitken A. C. Edinburgh Texematical Notes,18–23 A problem in combinations 1933]
- [H. W.BeckerJohn Riordan "The arithmetic of Bell and Stirling numbers" American Journal of Texematics,1948,385–394]
- Шаблон:Cite journal.
- Шаблон:Cite journal.
- Bender Edward A.Williamson, S. Gill, Set Partitions, 319–320, 2006
- Bells numbers