Теорема о существовании совершенного паросочетания в графе, полученном из регулярного удалением ребёр — различия между версиями
Строка 36: | Строка 36: | ||
Сложив <tex>\textbf{(3.1)}</tex> и <tex>\textbf{(3.2)}</tex>, получаем | Сложив <tex>\textbf{(3.1)}</tex> и <tex>\textbf{(3.2)}</tex>, получаем | ||
− | <tex>\sum\limits_{i=1}^t \alpha_i + 3\sum\limits_{i=1}^t \beta_i + \sum\limits_{i=1}^ | + | <tex>\sum\limits_{i=1}^t \alpha_i + 3\sum\limits_{i=1}^t \beta_i + \sum\limits_{i=1}^t \gamma_i \leqslant k(|S| + 2) - 2 ~~~ \textbf{(3)}</tex> |
− | Из неравенств <tex>\textbf{(2)}</tex> и <tex>\textbf{(3)}</tex> получаем | + | Из неравенств <tex>\textbf{(2)}</tex> и <tex>\textbf{(3)}</tex> получаем <tex>kn \leqslant k(|S| + 2) - 2</tex> |
+ | |||
+ | Тогда <tex>k(n - |S| - 2) \ \leqslant -2</tex>, следовательно, <tex>k(n - |S| - 2) \leqslant 0</tex> | ||
+ | |||
+ | <tex>k > 0</tex>, следовательно <tex>n - |S| - 2 \leqslant 0</tex> | ||
+ | |||
+ | и, следовательно, <tex>odd(G' \setminus S) = n < |S| + 2</tex>, что противоречит <tex>\textbf{(1)}</tex>. Таким образом, множество Татта найти нельзя, значит, в <tex>G'</tex> существует совершенное паросочетание. | ||
}} | }} | ||
Версия 21:59, 19 ноября 2017
Теорема (J. Plesnik, 1972): |
Пусть регулярный граф, с чётным числом вершин, причём , а граф получен из удалением не более рёбер. Тогда в графе есть совершенное паросочетание. — - |
Доказательство: |
Пусть , где , тогдаПредположим, что в совершенного паросочетания., тогда выберем множество Татта , тогда нетТак как чётно, то и тоже чётно. Из этого следует, что . Из этого факта и того, что следует, чтоПусть в графе всего компонент связности, из которых нечётны. Тогда пусть — нечётные компоненты связности , тогда , а — его чётные компоненты связности. Для каждого определим три величины:— рёбра из , соединяющие с , — их количество, то есть — рёбра из , соединяющие с , — их количество, то есть — рёбра из , соединяющие с остальными компонентами связности графа , — их количество, то есть . Тогда определим . Тогда — это количество рёбер графа , соединяющих с .По лемме о сравнимости по модулю 2 для нечётных компонент связности (то есть ) . . Из этого факта и того, что следует, что . Отсюда получаем неравенство:
Заметим, что все множества рёбер и не пересекаются(так как ) и ведут во множество . Поэтому сумма не превосходит суммарную степень вершин в . Во множестве находится всего вершин, степень каждой не превосходит . Поэтому суммарная степень вершин в не превосходит . Отсюда получаем неравенство:
Заметим, что множества рёбер и , не пересекаются, так как ведут из в , а ведут из в , ( ). Так как и , то сумма не превосходит мощности , откуда имеем:(так как ) Сложив и , получаем
Из неравенств и получаемТогда , следовательно,и, следовательно, , следовательно , что противоречит . Таким образом, множество Татта найти нельзя, значит, в существует совершенное паросочетание. |
Следствия
Заметим, что Теорема Петерсона является следствием из этой теоремы, так как в графах Петерсена , , чётно и
Утверждение: |
Пусть регулярный граф, с чётным числом вершин, причём . Тогда для любого ребра существует совершенное паросочетание графа , содержащее . — - |
Пусть | , а — остальные рёбра, инцидентные вершине . Согласно теореме, в графе есть совершенное паросочетание . Так как покрывается , а — единственное ребро , инцидентное ,
См. также
Источники информации
- Карпов В. Д. - Теория графов, стр 43