Панциклический граф — различия между версиями
(1 2 3) |
|||
| Строка 3: | Строка 3: | ||
}} | }} | ||
| − | + | {{Теорема | |
| + | |about=Mantel | ||
| + | |statement= | ||
| + | <tex>G(V, E) </tex> {{---}} граф, <tex>|V| = n, |E| \geqslant \genfrac{}{}{}{0}{n^2}{4} </tex>, тогда <tex> G </tex> сожержит треугольник. | ||
| + | }} | ||
{{Теорема | {{Теорема | ||
| Строка 14: | Строка 18: | ||
|proof= | |proof= | ||
| − | [[Файл:Circle 1.jpg|200px|left]] [[Файл:Circle 2.jpg|200px|right]] | + | [[Файл:Circle 1.jpg|200px|left||asdasdasdasd ad asdasd]] [[Файл:Circle 2.jpg|200px|right]] |
Обозначим как <tex> C=v_1 v_2 v_3 \ldots v_n </tex> гамильтонов цикл в графе <tex> G </tex>. Для простоты расположим <tex> C </tex> на окружности. Также подразумевается, что все индексы при вершинах берутся по модулю, то есть <tex> v_j = v_{((j - 1)\bmod n) + 1} </tex>. | Обозначим как <tex> C=v_1 v_2 v_3 \ldots v_n </tex> гамильтонов цикл в графе <tex> G </tex>. Для простоты расположим <tex> C </tex> на окружности. Также подразумевается, что все индексы при вершинах берутся по модулю, то есть <tex> v_j = v_{((j - 1)\bmod n) + 1} </tex>. | ||
| − | Пусть в графе нет цикла длины <tex> l </tex>, <tex> 3 \leqslant l \leqslant n-1 </tex> (по условию в графе существует гамильтонов цикл, длина которого равна <tex> n </tex>). Рассмотрим две соседние вершины <tex> | + | Пусть в графе нет цикла длины <tex> l </tex>, <tex> 3 \leqslant l \leqslant n-1 </tex> (по условию в графе существует гамильтонов цикл, длина которого равна <tex> n </tex>). Рассмотрим две соседние вершины <tex> v_j v_{j+1} </tex> и вместе с ними рассмотрим следующие пары: |
Для <tex>k</tex> таких, что <tex> v_k </tex> лежит на дуге <tex> (v_{j + l - 1}, v_{j + l}, v_{j -1}) </tex> рассмотрим пары (<tex>v_j, v_k</tex>) и (<tex>v_{j+1}, v_{k-l+3}</tex>) (см. рисунок слева) | Для <tex>k</tex> таких, что <tex> v_k </tex> лежит на дуге <tex> (v_{j + l - 1}, v_{j + l}, v_{j -1}) </tex> рассмотрим пары (<tex>v_j, v_k</tex>) и (<tex>v_{j+1}, v_{k-l+3}</tex>) (см. рисунок слева) | ||
| Строка 24: | Строка 28: | ||
Для <tex>k</tex> таких, что <tex> v_k </tex> лежит на дуге <tex> (v_{j + 2}, v_{j + 3}, v_{j + l - 2}) </tex> рассмотрим пары (<tex>v_j, v_k</tex>) и (<tex>v_{j+1}, v_{k-l+1}</tex>) (см. рисунок справа) | Для <tex>k</tex> таких, что <tex> v_k </tex> лежит на дуге <tex> (v_{j + 2}, v_{j + 3}, v_{j + l - 2}) </tex> рассмотрим пары (<tex>v_j, v_k</tex>) и (<tex>v_{j+1}, v_{k-l+1}</tex>) (см. рисунок справа) | ||
| − | При добавлении таких пар ребер в графе появляется цикл длины <tex> l </tex>, а значить в <tex> G </tex> может входить максимум одно ребро из таких пар. Тогда можно утверждать, что <tex> deg(v_j) + deg(v_{j + 1}) \leqslant n </tex>. | + | При добавлении таких пар ребер в графе появляется цикл длины <tex> l </tex> (выделены зеленым цветом на рисунках слева и справа), а значить в <tex> G </tex> может входить максимум одно ребро из таких пар. Тогда можно утверждать, что <tex> deg(v_j) + deg(v_{j + 1}) \leqslant n </tex>. |
Докажем методом от противного, что <tex> n </tex> {{---}} четно. Пусть <tex> n </tex> является нечетным, тогда из рассуждений выше существует вершина <tex> v_x </tex>, для которое верно, что <tex> deg(v_x) \leqslant \genfrac{}{}{}{0}{n-1}{2} </tex>. | Докажем методом от противного, что <tex> n </tex> {{---}} четно. Пусть <tex> n </tex> является нечетным, тогда из рассуждений выше существует вершина <tex> v_x </tex>, для которое верно, что <tex> deg(v_x) \leqslant \genfrac{}{}{}{0}{n-1}{2} </tex>. | ||
Версия 14:25, 15 декабря 2017
| Определение: |
| Панциклический граф (англ. pancyclic graph) — граф, в котором есть циклы всех длин от до . Если граф содержит все циклы от до , то такой граф называют -панциклическим. |
| Теорема (Mantel): |
— граф, , тогда сожержит треугольник. |
| Теорема (J. A. Bondy): |
— гамильтонов граф, .
Тогда верно одно из двух утверждений:
|
| Доказательство: |
|
Обозначим как гамильтонов цикл в графе . Для простоты расположим на окружности. Также подразумевается, что все индексы при вершинах берутся по модулю, то есть . Пусть в графе нет цикла длины , (по условию в графе существует гамильтонов цикл, длина которого равна ). Рассмотрим две соседние вершины и вместе с ними рассмотрим следующие пары: Для таких, что лежит на дуге рассмотрим пары () и () (см. рисунок слева) Для таких, что лежит на дуге рассмотрим пары () и () (см. рисунок справа) При добавлении таких пар ребер в графе появляется цикл длины (выделены зеленым цветом на рисунках слева и справа), а значить в может входить максимум одно ребро из таких пар. Тогда можно утверждать, что . Докажем методом от противного, что — четно. Пусть является нечетным, тогда из рассуждений выше существует вершина , для которое верно, что . Пусть это не так, тогда , значит , то есть мы получили противоречие с тем, что . Без потери общности пусть . Рассмотрим , то есть , но по условию — получили противоречие. Таким образом является четным. Тогда верно, что , а так как по условию , то . Данное равенство достигается, если верно, что:
Пусть не , тогда существует такое четное число , что в графе существует ребро , то есть существует цикл нечетной длины. Докажем, что в таком случае существует ребро . Пусть это не так и минимальное четное , что больше двух, то есть . Тогда существует три случая:
|
| Утверждение: |
Тогда верно одно из двух утверждений:
|
|
По теореме Оре — гамильтонов граф. Покажем, что . Пусть — минимальная степень вершины в графе.
|
См. также
Примечания