Декомпозиция Эдмондса-Галлаи — различия между версиями
Dogzik (обсуждение | вклад) |
Dogzik (обсуждение | вклад) (→Структурная теорема Эдмондса-Галлаи) |
||
Строка 86: | Строка 86: | ||
# <tex> \alpha (G - a) = \alpha (G) - 1.</tex> | # <tex> \alpha (G - a) = \alpha (G) - 1.</tex> | ||
|proof= | |proof= | ||
− | + | Для начала докажем, что <tex>D(G - a) = D(G)</tex>. <br> | |
[[Файл: Gallai-lema-a.png|150px|thumb|right|Случай '''а''']] | [[Файл: Gallai-lema-a.png|150px|thumb|right|Случай '''а''']] | ||
[[Файл: Gallai-lema-b.png|150px|thumb|right|Случай '''b''']] | [[Файл: Gallai-lema-b.png|150px|thumb|right|Случай '''b''']] | ||
Строка 108: | Строка 108: | ||
Таким образом, наше предположение невозможно и <tex>D(G - a) \subset D(G)</tex>. | Таким образом, наше предположение невозможно и <tex>D(G - a) \subset D(G)</tex>. | ||
А значит, <tex>D(G - a) = D(G)</tex>. | А значит, <tex>D(G - a) = D(G)</tex>. | ||
+ | |||
+ | |||
+ | Так как <tex>D(G - a) = D(G)</tex>, то все вершины, которые были соседями <tex>D(G)</tex>, таковыми и остались. Однако по условию <tex> a \in A(G)</tex>, значит <tex>A(G - a) = A(G) \setminus \{a\}</tex>. | ||
+ | |||
+ | |||
+ | Так же заметим, что <tex>C(G - a) = V(G - a) \setminus (D(G - a) \cup A(G - a)) = V(G - a) \setminus (D(G) \cup (A(G) \setminus \{a\}))</tex><tex> = V(G) \setminus (D(G) \cup A(G)) = C(G)</tex> | ||
+ | |||
+ | |||
+ | Наконец, так как <tex> a \in A(G)</tex>, то все максимальные паросочетания в <tex>G</tex> включали <tex>a</tex>. Следовательно <tex>\alpha (G - a) < \alpha (G)</tex>. Однако заметим, что взяв любое максимальное паросочетания в <tex>G</tex> и удалив ребро инцидентное <tex>a</tex>, мы получим паросочетание <tex>M'</tex> на 1 меньше исходного, при этом <tex>M' \in E(G - a)</tex>. В свою очередь это самое большое паросочетание, которое мы могли теоретически получить в <tex>G - a</tex>. Следовательно <tex> \alpha (G - a) = \alpha (G) - 1.</tex> | ||
}} | }} | ||
Версия 14:39, 15 декабря 2017
В этом направлении много усилий приложили Вильям Томас Татт (William Thomas Tutte), Клауд Берж (Claude Brege), Джек Эдмондс (Jack Edmonds) и Тибор Галлаи (Tibor Gallai).
Определение: |
Дефицитом (англ. deficit) графа
| мы будем называть величину:
Теорема (Бержа): |
Для любого графа выполняется: |
Теорема (Татта-Бержа): |
Дан граф , размер максимального паросочетания в нем равен: |
Доказательство: |
Предположим
|
Определение: |
Множество | , для которого , называется барьером (англ. barrier).
Определение: |
Пусть | . Множeство соседей (англ. neighbors) определим формулой:
Структурная теорема Эдмондса-Галлаи
- максимальное паросочетание, не покрывающее существует
- — размер максимального паросочетания в
Определение: |
Граф совершенное паросочетание. | называется фактор-критическим (англ. factor-critical graph), если для любой вершины в графе существует
Теорема (Галлаи): |
— связен и для любой вершины выполняется равенство . |
Лемма (Галлаи, о стабильности (англ. stability lemma)): |
Пусть Тогда:
|
Доказательство: |
Для начала докажем, что
Предположим, что существует максимальное паросочетание a. Путь b. Путь c. Путь кончается ребром из (см. рисунок) Рассмотрим паросочетание . Тогда , причём . Противоречие с максимальностью паросочетания .Таким образом, наше предположение невозможно и . А значит, .
|
Теорема (Галлаи, Эдмондс): |
Пусть — граф, — компоненты связности графа , . Тогда:
|
Доказательство: |
|
Утверждение (следствие из теоремы): |
— барьер графа |
Лемма (о связи барьера с | ):
Для любого барьера графа верно, что |
Доказательство: |
Рассмотрим | — нечётные компоненты связанности , — максимальное паросочетание в . не покрыта или . Всего графе не покрыто хотя бы вершин. Однако так как — барьер, непокрыто ровно столько вершин. Следовательно любое максимальное паросочетание не покрывает только вершины из , а значит каждая вершина барьера покрыта в любом максимальном паросочетании. Отсюда получаем, что ни одна вершина из не могла оказаться в барьере.
Утверждение (Следствие из леммы): |
В любом максимальном паросочетании все вершины барьера соединены соединены с вершинами |
Так как в барьере | , то ровно вершин из нечётных компонент покрыты рёбрами
Лемма (о дополнении барьера): |
Пусть — барьер графа . Тогда — барьер графа |
Доказательство: |
Так как , то — максимального паросочетания в . Следовательно , где — максимальное паросочетание в .
Отсюда следует, что — барьер графа . |
Теорема (о структуре барьера): |
Любой барьер графа состоит только из вершин , причём каждая вершина из этого множества входит в какой-то барьер |
Доказательство: |
По лемме о связи барьера с | мы знаем, что в барьере нет вершин вершин из . По лемме о дополнение барьера мы можем взять любую вершину из , удалить из графа, и с помощью барьера нового графа получить барьер исходного, включающий данную вершину.