Дисперсия случайной величины — различия между версиями
Helm (обсуждение | вклад) |
Helm (обсуждение | вклад) |
||
Строка 24: | Строка 24: | ||
* <tex>D\left[-\xi\right] = D[\xi];</tex> | * <tex>D\left[-\xi\right] = D[\xi];</tex> | ||
* <tex>D\left[\xi+b\right] = D[\xi].</tex> | * <tex>D\left[\xi+b\right] = D[\xi].</tex> | ||
+ | |||
+ | == Источники == | ||
+ | |||
+ | [[http://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BF%D0%B5%D1%80%D1%81%D0%B8%D1%8F_%D1%81%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%BE%D0%B9_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D1%8B|Википедия]] |
Версия 17:25, 24 декабря 2010
Диспе́рсия случа́йной величины́ — мера разброса данной случайной величины, то есть её отклонения от математического ожидания. Обозначается в русской литературе и в зарубежной. Квадратный корень из дисперсии, равный , называется среднеквадрати́чным отклоне́нием, станда́ртным отклоне́нием или стандартным разбросом. Стандартное отклонение измеряется в тех же единицах, что и сама случайная величина, а дисперсия измеряется в квадратах этой единицы измерения.
Содержание
Определение
Пусть случайная величина, определённая на некотором вероятностном пространстве. Тогда
—где символ математическое ожидание.
обозначаетЗамечания
- В силу линейности математического ожидания справедлива формула:
Свойства
- Дисперсия любой случайной величины неотрицательна:
- Если дисперсия случайной величины конечна, то конечно и её математическое ожидание;
- Если случайная величина равна константе, то её дисперсия равна нулю: Верно и обратное: если то почти всюду;
- Дисперсия суммы двух случайных величин равна:
- ковариация; , где — их
Источники
[[1]]