Теорема Турана об экстремальном графе — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
==Теорема Турана==
 
==Теорема Турана==
 
[[Файл:Turan example.png|200px|thumb|right|Пример графа Турана при <tex>n = 8, r = 4</tex>]]
 
[[Файл:Turan example.png|200px|thumb|right|Пример графа Турана при <tex>n = 8, r = 4</tex>]]
'''Теорема Ту́рана''' (англ. ''Turán's theorem'') {{---}} классическая теорема экстремальной теории графов.  
+
'''Теорема Ту́рана''' (англ. ''Turán's theorem'') {{---}} классическая теорема
Она послужила образцом для большого количества подобных теорем, которые изучают некоторые глобальные параметры, такие как [[Раскраска графа| хроматическое число]], относительно присутствия тех или иных подструктур.
+
[https://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D1%81%D1%82%D1%80%D0%B5%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B3%D1%80%D0%B0%D1%84%D0%BE%D0%B2 экстремальной теории графов].
 +
Она послужила образцом для большого количества подобных теорем, которые изучают, как наличие тех или иных подструктур влияет на некоторые глобальные параметры([[Раскраска графа| хроматическое число]]).
  
Впервые задачу сформулировал Пал Туран в <tex>1941</tex> году.
+
Впервые теорему сформулировал венгерский математик Пал Туран в <tex>1941</tex> году.
  
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
<tex>ex(n, K^r)</tex> {{---}} максимальное количество ребер в графе на <tex>n</tex> вершинах, которые не содержит <tex>K^r</tex> как подграф.
+
<tex>K_n</tex> {{---}} полный граф на <tex>n</tex> вершинах.
 
}}
 
}}
 +
 +
{{Определение
 +
|definition=
 +
<tex>ex(n, K_r)</tex> {{---}} максимальное количество ребер, которое может иметь граф на <tex>n</tex> вершинах, не включая в себя <tex>K_r</tex> как подграф.
 +
}}
 +
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
'''Граф Турана'''  <tex>T^{r-1}(n)</tex> {{---}} единственный полный <tex>(r - 1)</tex>-[[Двудольные графы|дольный]] полный граф на <tex>n > r-1</tex> вершинах, доли которого по мощности не отличаются более чем на <tex>1</tex>. Если <tex>n \leqslant r - 1</tex>, то <tex>T^{r-1}(n) = K^n</tex>. Через <tex> t_{r-1}(n) </tex> обозначим количество ребер в <tex>T^{r-1}(n)</tex>.
+
'''Граф Турана'''  <tex>T^{r-1}(n)</tex> {{---}} полный <tex>(r - 1)</tex>-[[Двудольные графы|дольный]] граф на <tex>n > r-1</tex> вершинах, доли которого по мощности отличаются не более чем на <tex>1</tex>. Если количество вершин не превосходит количество долей (<tex>n \leqslant r - 1</tex>), то <tex>T^{r-1}(n) = K_n</tex>.
 
}}
 
}}
 +
 +
{{Определение
 +
|definition=
 +
<tex>t_{r-1}(n)</tex> {{---}} количество ребер в <tex>T^{r-1}(n)</tex>.
 +
}}
 +
  
 
{{Лемма
 
{{Лемма
Строка 19: Строка 32:
 
Если <tex>G</tex> {{---}} <tex>(r - 1)</tex>-дольный граф с максимальным количеством ребер, то <tex>G = T^{r-1}(n)</tex>.
 
Если <tex>G</tex> {{---}} <tex>(r - 1)</tex>-дольный граф с максимальным количеством ребер, то <tex>G = T^{r-1}(n)</tex>.
 
|proof=
 
|proof=
Докажем от противного. Пусть существует <tex>(r - 1)</tex>-дольный граф с максимальным числом ребер, который не явлется графом Турана.
+
Докажем от противного. Пусть существует <tex>(r - 1)</tex>-дольный граф с максимальным числом ребер, который не является графом Турана.
 
Обозначим его <tex>G_m</tex>.
 
Обозначим его <tex>G_m</tex>.
 
Очевидно, что <tex>G_m</tex> является полным <tex>(r - 1)</tex>-дольным.
 
Очевидно, что <tex>G_m</tex> является полным <tex>(r - 1)</tex>-дольным.
 
Так как <tex>G_m \ne T^{r-1}(n) </tex>, то в <tex>G_m</tex> существуют доли <tex>V_1</tex> и <tex>V_2</tex>, что <tex>|V_1| - |V_2| > 1</tex>.
 
Так как <tex>G_m \ne T^{r-1}(n) </tex>, то в <tex>G_m</tex> существуют доли <tex>V_1</tex> и <tex>V_2</tex>, что <tex>|V_1| - |V_2| > 1</tex>.
Но тогда мы можем перекинуть одну вершину из <tex>V_1</tex> в <tex>V_2</tex> и количество ребер увеличится.
+
Но тогда возьмем вершину <tex>a \in V_1</tex> и перекинем ее в <tex>V_2</tex>. Тогда количество вершин, которые не могут быть соседями <tex>a</tex> уменьшилось с размером ее доли. Остальной граф не изменился, поэтому общее количество ребер увеличилось.
 
Это противоречит предположению, что граф <tex>G_m</tex> максимален по числу ребер.
 
Это противоречит предположению, что граф <tex>G_m</tex> максимален по числу ребер.
  
Строка 30: Строка 43:
 
{{Теорема
 
{{Теорема
 
|statement=
 
|statement=
Для всех целых чисел <tex>r</tex>, <tex>n</tex>, где <tex>r > 1</tex>, любой граф <tex>G \nsubseteq K^r</tex> с <tex>n</tex> вершинами и <tex>ex(n, K^r)</tex> ребрами есть <tex>T^{r-1}(n)</tex>.
+
Для всех натуральных чисел <tex>r</tex>, <tex>n</tex>, где <tex>r > 1</tex>, любой граф <tex>G \nsubseteq K_r</tex> с <tex>n</tex> вершинами и <tex>ex(n, K_r)</tex> ребрами есть <tex>T^{r-1}(n)</tex>.
 
|proof=
 
|proof=
 
[[Файл:Turan theorem induction step.png|300px|thumb|left|Шаг индукции]]
 
[[Файл:Turan theorem induction step.png|300px|thumb|left|Шаг индукции]]
Строка 37: Строка 50:
 
'''База:'''
 
'''База:'''
  
При <tex>n \leqslant r - 1</tex> имеем <tex>G = K^n = T^{r-1}(n)</tex>, что и утверждалось База доказана.
+
При <tex>n \leqslant r - 1</tex> имеем <tex>G = K_n = T^{r-1}(n)</tex>, что и утверждалось. База доказана.
  
 
'''Шаг индукции:'''
 
'''Шаг индукции:'''
  
 
Пусть теперь <tex>n \geqslant r</tex>.
 
Пусть теперь <tex>n \geqslant r</tex>.
Поскольку <tex>G</tex> реберно-максимален и не содержит подграфа <tex>K^r</tex>, то <tex>G</tex> содержит подграф <tex>K^{r-1}</tex>.  
+
Поскольку <tex>G</tex> реберно-максимален и не содержит подграфа <tex>K_r</tex>, то <tex>G</tex> содержит подграф <tex>K^{r-1}</tex>.
Обозначим любой из них как <tex>K</tex>.  
+
Обозначим любой из них как <tex>K</tex>.
Тогда по индукционному предположению <tex>G - K</tex> имеет не более <tex>t_{r-1}(n - r + 1)</tex> ребер, а любая вершина <tex>G - K</tex> имеет не более <tex>r - 2</tex> соседей в <tex>K.</tex>  
+
Тогда по индукционному предположению <tex>G - K</tex> имеет не более <tex>t_{r-1}(n - r + 1)</tex> ребер, а любая вершина <tex>G - K</tex> имеет не более <tex>r - 2</tex> соседей в <tex>K.</tex>
 
Следовательно мы можем оценить количество ребер в <tex>G</tex>:
 
Следовательно мы можем оценить количество ребер в <tex>G</tex>:
  
Строка 51: Строка 64:
 
Равенство справа следует непосредственно из графа Турана <tex>T^{r-1}(n)</tex>.
 
Равенство справа следует непосредственно из графа Турана <tex>T^{r-1}(n)</tex>.
  
Поскольку <tex>G</tex> экстремален для <tex>K^r</tex>, то в <tex>(1)</tex> имеет место равенство.  
+
Поскольку <tex>G</tex> экстремален для <tex>K_r</tex>, то в <tex>(1)</tex> имеет место равенство.
 
Таким образом, любая вершина из <tex>G - K</tex> имеет ровно <tex>r - 2</tex> соседа в <tex>K</tex> {{---}} точно так же, как и вершины <tex>x_1,\cdots, x_{r-1}</tex> из самого <tex>K</tex>.
 
Таким образом, любая вершина из <tex>G - K</tex> имеет ровно <tex>r - 2</tex> соседа в <tex>K</tex> {{---}} точно так же, как и вершины <tex>x_1,\cdots, x_{r-1}</tex> из самого <tex>K</tex>.
  
 
При <tex>i = 1,\cdots, r-1</tex> пусть <tex>V_i = \{v \in V(G) \mid vx_i \not\in E(G)\}</tex> есть множество всех вершин <tex>G</tex>, чьи <tex>r - 2</tex> соседей в <tex>K</tex> отличны от <tex>x_i</tex>.
 
При <tex>i = 1,\cdots, r-1</tex> пусть <tex>V_i = \{v \in V(G) \mid vx_i \not\in E(G)\}</tex> есть множество всех вершин <tex>G</tex>, чьи <tex>r - 2</tex> соседей в <tex>K</tex> отличны от <tex>x_i</tex>.
Так как каждая вершина <tex>G - K</tex> имеет ровно <tex>r - 2</tex> соседа в <tex>K</tex>, то все <tex>V_i</tex> не зависимы.  
+
Так как каждая вершина <tex>G - K</tex> имеет ровно <tex>r - 2</tex> соседа в <tex>K</tex>, то все <tex>V_i</tex> не зависимы.
При этом они в объединении дают <tex>V(G)</tex> поскольку <tex>K^r \nsubseteq G</tex>.  
+
При этом они в объединении дают <tex>V(G)</tex> поскольку <tex>K_r \nsubseteq G</tex>.
 
Следовательно, граф <tex>G</tex> является <tex>(r-1)</tex>-дольным.
 
Следовательно, граф <tex>G</tex> является <tex>(r-1)</tex>-дольным.
Так как по лемме <tex>T^{r-1}(n)</tex> {{---}} единственный <tex>(r-1)</tex>-дольный граф с <tex>n</tex> вершинами и максимальными числом ребер, наше утверждение, что <tex>G = T^{r-1}(n)</tex>, следует из предположения об экстремальности <tex>G</tex>.
+
Тогда по лемме из предположения об экстремальности <tex>G</tex> следует, что <tex>G = T^{r-1}(n)</tex>.
  
 
}}
 
}}
Строка 66: Строка 79:
 
==Источники информации==
 
==Источники информации==
 
*''Дистель, Рейнград.'' Теория графов: Пер. с англ. — Новосибирск: Изд-во Ин-та математики, 2002. — 166-170 стр. — ISBN 5-86134-101-X.
 
*''Дистель, Рейнград.'' Теория графов: Пер. с англ. — Новосибирск: Изд-во Ин-та математики, 2002. — 166-170 стр. — ISBN 5-86134-101-X.
 +
== Ссылки ==
 +
*[https://ru.wikipedia.org/wiki/%D0%AD%D0%BA%D1%81%D1%82%D1%80%D0%B5%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%B3%D1%80%D0%B0%D1%84%D0%BE%D0%B2 Экстремальная теория графов]

Версия 01:11, 31 декабря 2017

Теорема Турана

Пример графа Турана при [math]n = 8, r = 4[/math]

Теорема Ту́рана (англ. Turán's theorem) — классическая теорема экстремальной теории графов. Она послужила образцом для большого количества подобных теорем, которые изучают, как наличие тех или иных подструктур влияет на некоторые глобальные параметры( хроматическое число).

Впервые теорему сформулировал венгерский математик Пал Туран в [math]1941[/math] году.


Определение:
[math]K_n[/math] — полный граф на [math]n[/math] вершинах.


Определение:
[math]ex(n, K_r)[/math] — максимальное количество ребер, которое может иметь граф на [math]n[/math] вершинах, не включая в себя [math]K_r[/math] как подграф.


Определение:
Граф Турана [math]T^{r-1}(n)[/math] — полный [math](r - 1)[/math]-дольный граф на [math]n \gt r-1[/math] вершинах, доли которого по мощности отличаются не более чем на [math]1[/math]. Если количество вершин не превосходит количество долей ([math]n \leqslant r - 1[/math]), то [math]T^{r-1}(n) = K_n[/math].


Определение:
[math]t_{r-1}(n)[/math] — количество ребер в [math]T^{r-1}(n)[/math].


Лемма:
Если [math]G[/math][math](r - 1)[/math]-дольный граф с максимальным количеством ребер, то [math]G = T^{r-1}(n)[/math].
Доказательство:
[math]\triangleright[/math]

Докажем от противного. Пусть существует [math](r - 1)[/math]-дольный граф с максимальным числом ребер, который не является графом Турана. Обозначим его [math]G_m[/math]. Очевидно, что [math]G_m[/math] является полным [math](r - 1)[/math]-дольным. Так как [math]G_m \ne T^{r-1}(n) [/math], то в [math]G_m[/math] существуют доли [math]V_1[/math] и [math]V_2[/math], что [math]|V_1| - |V_2| \gt 1[/math]. Но тогда возьмем вершину [math]a \in V_1[/math] и перекинем ее в [math]V_2[/math]. Тогда количество вершин, которые не могут быть соседями [math]a[/math] уменьшилось с размером ее доли. Остальной граф не изменился, поэтому общее количество ребер увеличилось. Это противоречит предположению, что граф [math]G_m[/math] максимален по числу ребер.

Значит [math]G = T^{r-1}(n)[/math]
[math]\triangleleft[/math]
Теорема:
Для всех натуральных чисел [math]r[/math], [math]n[/math], где [math]r \gt 1[/math], любой граф [math]G \nsubseteq K_r[/math] с [math]n[/math] вершинами и [math]ex(n, K_r)[/math] ребрами есть [math]T^{r-1}(n)[/math].
Доказательство:
[math]\triangleright[/math]
Шаг индукции

Применим индукцию по [math]n[/math].

База:

При [math]n \leqslant r - 1[/math] имеем [math]G = K_n = T^{r-1}(n)[/math], что и утверждалось. База доказана.

Шаг индукции:

Пусть теперь [math]n \geqslant r[/math]. Поскольку [math]G[/math] реберно-максимален и не содержит подграфа [math]K_r[/math], то [math]G[/math] содержит подграф [math]K^{r-1}[/math]. Обозначим любой из них как [math]K[/math]. Тогда по индукционному предположению [math]G - K[/math] имеет не более [math]t_{r-1}(n - r + 1)[/math] ребер, а любая вершина [math]G - K[/math] имеет не более [math]r - 2[/math] соседей в [math]K.[/math] Следовательно мы можем оценить количество ребер в [math]G[/math]:

[math]|E(G)| \leqslant \underbrace{t_{r-1}(n + r - 1)}_{G-K} + \underbrace{(n - r + 1)(r - 2)}_{(G-K) \rightleftarrows (K)} + \underbrace{{r-1 \choose 2}}_{K} = t_{r-1}(n); (1)[/math]

Равенство справа следует непосредственно из графа Турана [math]T^{r-1}(n)[/math].

Поскольку [math]G[/math] экстремален для [math]K_r[/math], то в [math](1)[/math] имеет место равенство. Таким образом, любая вершина из [math]G - K[/math] имеет ровно [math]r - 2[/math] соседа в [math]K[/math] — точно так же, как и вершины [math]x_1,\cdots, x_{r-1}[/math] из самого [math]K[/math].

При [math]i = 1,\cdots, r-1[/math] пусть [math]V_i = \{v \in V(G) \mid vx_i \not\in E(G)\}[/math] есть множество всех вершин [math]G[/math], чьи [math]r - 2[/math] соседей в [math]K[/math] отличны от [math]x_i[/math]. Так как каждая вершина [math]G - K[/math] имеет ровно [math]r - 2[/math] соседа в [math]K[/math], то все [math]V_i[/math] не зависимы. При этом они в объединении дают [math]V(G)[/math] поскольку [math]K_r \nsubseteq G[/math]. Следовательно, граф [math]G[/math] является [math](r-1)[/math]-дольным.

Тогда по лемме из предположения об экстремальности [math]G[/math] следует, что [math]G = T^{r-1}(n)[/math].
[math]\triangleleft[/math]

См. также

Источники информации

  • Дистель, Рейнград. Теория графов: Пер. с англ. — Новосибирск: Изд-во Ин-та математики, 2002. — 166-170 стр. — ISBN 5-86134-101-X.

Ссылки