Конструирование комбинаторных объектов и их подсчёт — различия между версиями
Mervap (обсуждение | вклад) м |
Mervap (обсуждение | вклад) (proof?) |
||
Строка 62: | Строка 62: | ||
|statement= | |statement= | ||
Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">M=MSet(A)</tex> {{---}} множество всех мультимножеств <ref>[[wikipedia:Multiset|Wikipedia {{---}} Мультимножества]]</ref> из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>. Тогда '''количество мультимножеств''' из объектов суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">M_{n}=m_{n, n}</tex>, где <tex dpi="150">m_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}+i-1}{i} m_{n-ik, k-1}</tex> {{---}} количество таких мультимножеств, которые содержат объекты, вес которых не больше чем <tex dpi="130">k</tex>. | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex> {{---}} множество из различных объектов, <tex dpi="130">M=MSet(A)</tex> {{---}} множество всех мультимножеств <ref>[[wikipedia:Multiset|Wikipedia {{---}} Мультимножества]]</ref> из элементов <tex dpi="130">A</tex>, <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>. Тогда '''количество мультимножеств''' из объектов суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">M_{n}=m_{n, n}</tex>, где <tex dpi="150">m_{n, k}=\sum_{i=0}^{\lfloor \frac{n}{k} \rfloor} \binom{w_{k}+i-1}{i} m_{n-ik, k-1}</tex> {{---}} количество таких мультимножеств, которые содержат объекты, вес которых не больше чем <tex dpi="130">k</tex>. | ||
+ | |proof=Рассуждения аналогичны рассуждениям <tex dpi="130">PSet</tex>, однако теперь мы можем брать один и тот же элемент несколько раз. То есть для подсчета вместо обычных сочетаний нужно использовать сочетания с повторениями. | ||
}} | }} | ||
Строка 95: | Строка 96: | ||
|statement= | |statement= | ||
Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex>, <tex dpi="130">B=\{b_{1},b_{2}, \ldots ,b_{m}\}</tex> {{---}} множества из различных объектов, <tex dpi="130">D=Pair(A, B)</tex> {{---}} множество всех пар объектов, составленных из элементов <tex dpi="130">A</tex> и <tex dpi="130">B</tex>. <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>, составленных из элементов <tex dpi="130">A</tex>, а <tex dpi="130">U=\{u_{1},u_{2}, \ldots ,u_{k}\}</tex> {{---}} соответственно для <tex dpi="130">B</tex>. Тогда '''количество пар''' из объектов суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">D_{n}=\sum_{i=0}^{n}w_{i}u_{n-i}</tex>. | Пусть <tex dpi="130">A=\{a_{1},a_{2}, \ldots ,a_{z}\}</tex>, <tex dpi="130">B=\{b_{1},b_{2}, \ldots ,b_{m}\}</tex> {{---}} множества из различных объектов, <tex dpi="130">D=Pair(A, B)</tex> {{---}} множество всех пар объектов, составленных из элементов <tex dpi="130">A</tex> и <tex dpi="130">B</tex>. <tex dpi="130">W=\{w_{1},w_{2}, \ldots ,w_{k}\}</tex> {{---}} количество объектов веса <tex dpi="130">\{1 \ldots k\}</tex>, составленных из элементов <tex dpi="130">A</tex>, а <tex dpi="130">U=\{u_{1},u_{2}, \ldots ,u_{k}\}</tex> {{---}} соответственно для <tex dpi="130">B</tex>. Тогда '''количество пар''' из объектов суммарного веса <tex dpi="130">n</tex> можно вычислить как <tex dpi="150">D_{n}=\sum_{i=0}^{n}w_{i}u_{n-i}</tex>. | ||
+ | |proof=Чтобы составить пару веса <tex dpi="130">n</tex> нужно взять один элемент веса <tex dpi="130">0 \leqslant i \leqslant n</tex> и элемент веса <tex dpi="130">n-i</tex>, что полностью соответствует данной формуле. | ||
}} | }} | ||
Строка 109: | Строка 111: | ||
По [[Лемма Бёрнсайда и Теорема Пойа#Лемма Бёрнсайда|лемме Бёрнсайда]] <tex dpi="150">c_{n,s} =\sum_{i=0}^{s-1}\dfrac{|St(\vec{i})|}{s}</tex>, где <tex dpi="150">|St(\vec{i})|</tex> {{---}} количество стабилизаторов для циклического сдвига на <tex dpi="150">i</tex> . | По [[Лемма Бёрнсайда и Теорема Пойа#Лемма Бёрнсайда|лемме Бёрнсайда]] <tex dpi="150">c_{n,s} =\sum_{i=0}^{s-1}\dfrac{|St(\vec{i})|}{s}</tex>, где <tex dpi="150">|St(\vec{i})|</tex> {{---}} количество стабилизаторов для циклического сдвига на <tex dpi="150">i</tex> . | ||
+ | |proof=Очевидно, что длина цикла веса <tex dpi="130">n</tex> может быть от <tex dpi="130">1</tex> до <tex dpi="130">n</tex>. Посмотрим сколько существует циклов каждой длины. Это можно сделать по лемме Бёрнсайда. | ||
}} | }} | ||
Версия 10:20, 31 декабря 2017
Содержание
Последовательности (Seq)
Утверждение: |
Пусть — множество из различных объектов, — множество всех последовательностей из элементов , — количество объектов веса от до . Мы считаем, что нет объектов веса , так как в противном случае существует бесконечное количество последовательностей любого веса. Тогда, количество последовательностей веса можно вычислить как . Причем , так как есть единственный способ составить пустую последовательность. |
Докажем по индукции. База .
Переход.
|
Подсчет битовых векторов длины
Пусть битовых векторов, .
, — множество всехТогда,
.Подсчет Seq из маленьких и больших элементов
Пусть
, , — множество всех последовательностей из маленьких и больших элементов, , .Тогда, [1].
, где — -ое число ФибоначчиПодсчет подвешенных непомеченных деревьев с порядком на детях
Пусть
— количество таких деревьев с вершинами, . — множество всех последовательностей из данных деревьев. — количество последовательностей с суммарным количество вершин . Чтобы получить дерево из вершин, достаточно взять вершину, и подвесить к ней последовательность деревьев с суммарным количеством вершин . Тогда:- .
- число Каталана. , где — -ое
Множества (PSet)
Утверждение: |
Пусть — множество из различных объектов, — множество всех множеств, составленных из элементов , — количество объектов веса от до . Для простоты считаем что нет объектов веса . Тогда количество множеств суммарного веса можно вычислить как , где — количество таких множеств, которые содержат объекты, вес которых не больше чем . Причем , так как не набирать никакой вес есть один способ, а , , так как нельзя набрать положительный вес из ничего. |
Изначально у нас есть только пустое множество веса | . Рассмотрим очередной этап вычисления . Для данных и у нас уже имеется множество, которое необходимо дополнить. Мы можем сделать это добавляя от до элементов веса (при условии, что столько различных элементов имеется) в данное множество. Следовательно, у нас образуется новые множества, которые будет необходимо дополнить элементами веса меньше (чтобы избежать повторений) суммарного веса , где — количество элементов веса которое мы добавили в данное множество. Довольно легко заметить, что данные операции полностью соответствуют описанной выше формуле.
Количество PSet из элементов 0 и 1
Пусть
, — множество всех множеств из , , . Тогда , где .- .
- .
- .
- .
- Для , .
Количество разбиений на слагаемые
Пусть разбиений на слагаемые, , . Тогда,
, — множество всех- динамического программирования. , где , что, как несложно заметить, соответствует формуле, полученной методом
Мультимножества (MSet)
Утверждение: |
Пусть [2] из элементов , — количество объектов веса . Тогда количество мультимножеств из объектов суммарного веса можно вычислить как , где — количество таких мультимножеств, которые содержат объекты, вес которых не больше чем . — множество из различных объектов, — множество всех мультимножеств |
Рассуждения аналогичны рассуждениям | , однако теперь мы можем брать один и тот же элемент несколько раз. То есть для подсчета вместо обычных сочетаний нужно использовать сочетания с повторениями.
Количество MSet из элементов 0 и 1
Пусть
, — множество всех множеств из , , .- Тогда, , где
- .
- .
- .
- .
- .
Подсчет подвешенных непомеченных деревьев без порядка на детях
Пусть
— количество таких деревьев с вершинами, . — множество всех лесов из данных деревьев, так как лес можно интерпретировать как мультимножество из деревьев. — количество лесов с суммарным количество вершин . — количество таких лесов из вершин, что деревья в них содержат не более чем вершин. Чтобы получить дерево из вершин, достаточно взять вершину и подвесить к ней лес деревьев с суммарным количеством вершин . Тогда:- .
- .
- .
Количество таких деревьев с [3]
вершинами образуют последовательность
Пары (Pair)
Утверждение: |
Пусть , — множества из различных объектов, — множество всех пар объектов, составленных из элементов и . — количество объектов веса , составленных из элементов , а — соответственно для . Тогда количество пар из объектов суммарного веса можно вычислить как . |
Чтобы составить пару веса | нужно взять один элемент веса и элемент веса , что полностью соответствует данной формуле.
Количество подвешенных неполных двоичных деревьев
Пусть
— количество таких деревьев с вершинами, . — множество всех пар из данных деревьев. Чтобы получить двоичное дерево из вершин, достаточно взять вершину и подвесить к ней левого и правого сына с суммарным количеством вершин . Тогда:- число Каталана. , где — -ое
Циклы (Cycle)
Утверждение: |
Пусть [4] из элементов , — количество объектов веса .
— множество из различных объектов, — множество всех циклов Тогда количество циклов веса По можно вычислить как , где — количество циклов веса длины . лемме Бёрнсайда , где — количество стабилизаторов для циклического сдвига на . |
Очевидно, что длина цикла веса | может быть от до . Посмотрим сколько существует циклов каждой длины. Это можно сделать по лемме Бёрнсайда.
Найдем
в общем случае.Пусть наибольший общий делитель. Заметим, что в -ой перестановке на -ой позиции стоит элемент . Также, заметим, что элемент переходит в элемент , где . Из этого следует, что длина цикла для -ой перестановки равна , где — наименьшее общее кратное.
—Также заметим, что если вес
нельзя равномерно распределить по всей длине цикла, то стабилизатор равен .
Где
— число способов упорядочить набор из элементов суммарного веса и, причем .
Задача об ожерельях
Решим данным способом задачу об ожерельях. Пусть необходимый вес — это количество бусинок, а — количество цветов. Причем каждая бусинка весит . То есть .
так как невозможно набрать вес менее, чем бусинами при весе бусин .
. Поскольку все бусины имеют одинаковый вес , то
В итоге,
.Производящие функции
Для анализа свойств таких больших групп часто применяют метод производящих функций. Рассмотренные классы имеют следующие производящие функции:
См.также
- Лемма Бёрнсайда и Теорема Пойа
- Числа Каталана
- Генерация комбинаторных объектов в лексикографическом порядке