Задача о динамической связности — различия между версиями
(→remove(u,v)) |
(→add(u,v)) |
||
Строка 39: | Строка 39: | ||
Очевидно, что <tex>G_{\log n} \subseteq G_{\log n-1} \subseteq \ldots \subseteq G_1 \subseteq G_0 = G</tex>. Выделим в графах остовные леса таким образом, что <tex>F_{\log n} \subseteq F_{\log n-1} \subseteq \ldots \subseteq F_1 \subseteq F_0</tex>, где <tex>F_i</tex> {{---}} остовный лес графа <tex>G_i</tex>. | Очевидно, что <tex>G_{\log n} \subseteq G_{\log n-1} \subseteq \ldots \subseteq G_1 \subseteq G_0 = G</tex>. Выделим в графах остовные леса таким образом, что <tex>F_{\log n} \subseteq F_{\log n-1} \subseteq \ldots \subseteq F_1 \subseteq F_0</tex>, где <tex>F_i</tex> {{---}} остовный лес графа <tex>G_i</tex>. | ||
− | Удобнее всего новому ребру давать уровень <tex>0</tex>. В этом случае изменится только <tex>G_0</tex>, так как в остальные подграфы <tex>G_i</tex> рёбра нулевого уровня не входят. | + | Удобнее всего новому ребру давать уровень <tex>0</tex>. В этом случае изменится только <tex>G_0</tex>, так как в остальные подграфы <tex>G_i</tex> рёбра нулевого уровня не входят. после вставки нового ребра нам нужно проверить, были ли вершины <tex>u</tex> и <tex>v</tex> в одной компоненте связности до того, как мы вставили ребро. Если они лежали в разных компонентах, то необходимо новое ребро добавить и в остовный лес <tex>F_0</tex>. |
<!---------- '''function''' add('''Node''' u, '''Node''' v): we need a Psevdocode--> | <!---------- '''function''' add('''Node''' u, '''Node''' v): we need a Psevdocode--> |
Версия 13:41, 14 января 2018
Задача: |
Есть неориентированный граф из вершин, изначально не содержащий рёбер. Требуется обработать запросов трёх типов:
|
Содержание
Динамическая связность в лесах
Если задача такова, что в графе нет и не может быть циклов, то она сводится к задаче о связности в деревьях эйлерова обхода. Время работы каждого запроса для упрощённой задачи — .
Обобщение задачи для произвольных графов
Существуют задачи, в которых граф не обязательно на протяжении нашей работы после каждой операции добавления ребра остаётся лесом. Для решения таких задач в каждой компоненте связности выделим остовные деревья, которые образуют остовный лес. Попробуем выполнить операцию удаления ребра.--- Для этого ---->
connected(u,v)
Граф и его остовный лес — одно и то же с точки зрения связности. Поэтому проверка связности в графе сводится к проверке связности в остовном лесе и решается за
.add(u,v)
Чтобы разобраться с тем, как изменится граф и остовный лес при добавлении и удалении ребра, введём функцию
и назовём её уровнем ребра . Уровни ребра можно распределить любым способом, но для всех должно выполняться следующее свойство: размер каждой компоненты связности не превосходит . Здесь графы определяются так: .Очевидно, что
. Выделим в графах остовные леса таким образом, что , где — остовный лес графа .Удобнее всего новому ребру давать уровень
. В этом случае изменится только , так как в остальные подграфы рёбра нулевого уровня не входят. после вставки нового ребра нам нужно проверить, были ли вершины и в одной компоненте связности до того, как мы вставили ребро. Если они лежали в разных компонентах, то необходимо новое ребро добавить и в остовный лес .
remove(u,v)
Утверждение: |
Если ребро, которое мы хотим удалить, не принадлежит остовному лесу, то связность между любой парой вершин сохранится. |
Допустим, что это не так. Понятно, что при разрезании ребра нового пути между вершинами не появится. Предположим, что нарушилась связность для каких-то двух вершин. Значит, мы убрали мост. А любой мост принадлежит всем остовным деревьям его компоненты. Противоречие. |
Таким образом, если мы удалили ребро не из остовного леса, то нам не придётся перестраивать лес и пересчитывать значение
. Рассмотрим случаи, когда мы берём ребро из леса.