Дискретная случайная величина — различия между версиями
Mervap (обсуждение | вклад) |
Mervap (обсуждение | вклад) м (→Функция плотности вероятности) |
||
Строка 38: | Строка 38: | ||
#Найдем функцию распределения числа очков, выпавших при бросании игральной кости. Пусть у нас есть вероятности выпадения чисел <tex>1 \ldots 6</tex> соответственно равны <tex>p_{1} \ldots p_{6}</tex>. Для <tex>k \leqslant 1 ~ F(x) = 0</tex>, так как не может выпасть цифра меньше <tex>1</tex>. Для <tex>k > 1 ~ F(x) = \sum\limits_{i = 1}^{k - 1}p_{i}</tex> | #Найдем функцию распределения числа очков, выпавших при бросании игральной кости. Пусть у нас есть вероятности выпадения чисел <tex>1 \ldots 6</tex> соответственно равны <tex>p_{1} \ldots p_{6}</tex>. Для <tex>k \leqslant 1 ~ F(x) = 0</tex>, так как не может выпасть цифра меньше <tex>1</tex>. Для <tex>k > 1 ~ F(x) = \sum\limits_{i = 1}^{k - 1}p_{i}</tex> | ||
− | ==Функция плотности | + | ==Функция плотности распределения вероятностей== |
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | '''Функция плотности | + | '''Функция плотности распределения вероятносткй''' (англ. ''Probability density function'') {{---}} функция <tex>f(x)</tex>, определённая на <tex>\mathbb{R}</tex> как первая производная функции распределения. |
:<tex>f(x) = F'(x)</tex> }} | :<tex>f(x) = F'(x)</tex> }} | ||
Строка 54: | Строка 54: | ||
*Плотность вероятности определена почти всюду. | *Плотность вероятности определена почти всюду. | ||
:Иными словами, множество точек, для которых она не определена, имеет меру ноль. | :Иными словами, множество точек, для которых она не определена, имеет меру ноль. | ||
+ | |||
+ | Для дискретной случайной величины '''не''' существует функции плотности вероятности, так как данная функция не является абсолютно непрерывной | ||
== См. также == | == См. также == |
Версия 01:18, 7 марта 2018
Определение: |
Случайная величина (англ. random variable) — отображение из множества элементарных исходов в множество вещественных чисел. |
Содержание
Дискретная случайная величина
Определение: |
Дискретной случайной величиной (англ. discrete random variable) называется случайная величина, множество значений которой не более чем счётно, причём принятие ею каждого из значений есть случайное событие с определённой вероятностью. |
Примеры
Проще говоря, дискретные случайные величины — это величины, количество значений которых можно пересчитать. Например:
- Число попаданий в мишень при выстрелах. Принимаемые значения
- Количество выпавших орлов при бросков монетки. Принимаемые значения
- Число очков, выпавших при бросании игральной кости. Случайная величина принимает одно из значений —
Существуют также непрерывные случайные величины. Например, координаты точки попадания при выстреле.
Функция распределения
Определение: |
Функция распределения случайной величины (англ. cumulative distribution function (CDF)) — функция | , определённая на как , т.е. выражающая вероятность того, что примет значение, меньшее чем
Свойства функции распределения:
- при
- непрерывна слева
- .
Примеры
- Найдем функцию распределения количества попаданий в мишень. Пусть у нас есть выстрелов, вероятность попадания равна . Необходимо найти . Для , так как нельзя попасть в мишень отрицательное число раз. Для
- Аналогичное решение имеет функция распределения числа выпавших орлов при броске монеты, если шанс выпадения орла — .
- Найдем функцию распределения числа очков, выпавших при бросании игральной кости. Пусть у нас есть вероятности выпадения чисел соответственно равны . Для , так как не может выпасть цифра меньше . Для
Функция плотности распределения вероятностей
Определение: |
Функция плотности распределения вероятносткй (англ. Probability density function) — функция | , определённая на как первая производная функции распределения.
Свойства функции плотности вероятности:
- Интеграл от плотности по всему пространству равен единице:
- .
- Плотность вероятности определена почти всюду.
- Иными словами, множество точек, для которых она не определена, имеет меру ноль.
Для дискретной случайной величины не существует функции плотности вероятности, так как данная функция не является абсолютно непрерывной