Список заданий по ДМ 2018 весна — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 69: Строка 69:
 
# Постройте регулярную Марковскую цепь с двумя состояниями и эргодическим распределением $[a, 1-a]$ для заданного $a$.
 
# Постройте регулярную Марковскую цепь с двумя состояниями и эргодическим распределением $[a, 1-a]$ для заданного $a$.
 
# Постройте регулярную Марковскую цепь с $n$ состояниями и заданным эргодическим распределением.
 
# Постройте регулярную Марковскую цепь с $n$ состояниями и заданным эргодическим распределением.
 +
# Пусть $L$ - формальный язык. Докажите, что $(L^*)^* = L^*$
 +
# Пусть $R$ и $S$ - языки. Докажите или опровергните, что $(R \cup S)^* = R^* \cup S^*$.
 +
# Пусть $R$ и $S$ - языки. Докажите или опровергните, что $(R \cap S)^* = R^* \cap S^*$.
 +
# Пусть $R$ и $S$ - языки. Докажите или опровергните, что $(R \cup S)^* = (R^*S^*)^*$.
 +
# Пусть $R$ и $S$ - языки. Обозначим как $RS$ язык слов, представимых в виде конкатенации слова из $R$ и слова из $S$ (в этом порядке). Докажите, что $(R\cup S)T=RT \cup  ST$, $(R\cap S)T=RT \cap  ST$.
 +
# Пусть $L$ - язык. Обозначим как $Lc$ язык, который получается из $L$ дописыванием в конец каждому слову символа $c$. Обозначим как $Lc^{-1}$ язык, который получается из $L$ откидыванием всех слов, которые не заканчиваются на $c$, а затем у оставшихся слов откидыванием конечного символа $c$. Докажите или опровергните, что $(Lc)c^{-1}=L$, $(Lc^{-1})c=L$.
 +
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых четность числа 0 равна четности числа 1
 +
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых число нулей кратно 3
 +
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых число нулей не кратно 3. Сделайте вывод из последних двух заданий.
 +
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых нет трех нулей подряд
 +
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых есть три нуля подряд
 +
# Постройте конечный автомат для языка слов над бинарным алфавитом, которые представляют собой двоичную запись чисел, кратных 5
 +
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых число нулей кратно 3 и которые представляют собой двоичную запись чисел кратных 5.
 +
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых число нулей кратно 3 или которые представляют собой двоичную запись чисел кратных 5. Сделайте вывод из последних двух заданий.
 +
# Постройте конечный автомат для языка слов над бинарным алфавитом, в которых число единиц кратно 3. Сделайте вывод.
 +
# Постройте детерминированный конечный автомат для языка слов над бинарным алфавитом, в которых второй символ с конца равен последнему символу.

Версия 12:30, 18 марта 2018

  1. Чему равна вероятность, что две случайно вытянутые кости домино можно приложить друг к другу по правилам домино?
  2. Чему равна вероятность, что на двух брошенных честных игральных костях выпадут числа, одно из которых делит другое?
  3. Чему равна вероятность, что если вытянуть из 52-карточной колоды две случайные карты, одной из них можно побить другую (одна из мастей назначена козырем, картой можно побить другую, если они одинаковой масти или если одна из них козырь)?
  4. Чему равна вероятность, что на двадцати брошенных честных монетах выпадет поровну нулей и единиц?
  5. Петя и Вася три раза бросают по одной честной игровой кости. Вася два раза выкинул строго больше, чем Петя, а один раз строго меньше. При этом Петя в сумме выкинул строго больше, чем Вася. С какой вероятностью такое могло произойти?
  6. Приведите пример трех событий, для которых $P(A \cap B \cap C) = P(A)P(B)P(C)$, но которые не являются независимыми, причем вероятности всех трех событий больше 0
  7. Доказать или опровергнуть, что для независимых событий $A$ и $B$ и события $C$, где $P(C) > 0$ выполнено $P(A \cap B|C) = P(A|C)P(B|C)$
  8. Доказать или опровергнуть, что для независимых событий $A$ и $B$ и события $C$, где $P(A) > 0$, $P(B) > 0$ выполнено $P(C|A \cap B) = P(C|A)P(C|B)$
  9. Доказать или опровергнуть: если $P(A|B) = P(B|A)$, то $P(A) = P(B)$
  10. Доказать или опровергнуть: если $P(A|B) = P(B|A)$, то $A$ и $B$ независимы
  11. Доказать или опровергнуть: если $P(A|C) = P(B|C)$, то $P(C|A) = P(C|B)$
  12. Доказать или опровергнуть: если $A$ и $B$ независимы, то $\Omega \setminus A$ и $\Omega \setminus B$ независимы
  13. Петя собирается смотреть серию матчей финала Флатландской хоккейной лиги. В финале две команды играют до 5 побед, ничьих не бывает, таким образом максимум в финале будет не более 9 матчей. Вася рассказал Пете, что всего в финале было 7 матчей. Петя считает матч интересным, если перед его просмотром он не знает, кто выиграет финал. Пусть все возможные последовательности исходов матчей, удовлетворяющих описанным условиями, равновероятны. Какова вероятность, что будет хотя бы 4 интересных матча?
  14. Петя собирается смотреть серию матчей финала Флатландской хоккейной лиги. В финале две команды играют до 5 побед, ничьих не бывает, таким образом максимум в финале будет не более 9 матчей. Вася рассказал Пете, что всего в финале было 7 матчей. Петя считает матч зрелищным, если перед его просмотром он не знает, кто его выиграет. Пусть все возможные последовательности исходов матчей, удовлетворяющих описанным условиями, равновероятны. Какова вероятность, что будет хотя бы 5 зрелищных матчей?
  15. Найдите распределение и математическое ожидание следующей случайной величины: число бросков нечестной монеты до первого выпадения 1.
  16. Найдите распределение и математическое ожидание следующей случайной величины: число бросков честной монеты до второго выпадения 1.
  17. Используя формулу Стирлинга $n!\approx \sqrt{2\pi n}\left(\frac{n}{e}\right)^n$ оцените, чему равна вероятность, что на $2n$ брошенных честных монетах выпадет поровну нулей и единиц.
  18. Найдите математическое ожидание числа инверсий в перестановке чисел от 1 до $n$
  19. Найдите математическое ожидание числа подъемов в перестановке чисел от 1 до $n$
  20. Найдите математическое ожидание числа троек $i$, $j$, $k$, где $i < j < k$ и $a[i] < a[j] < a[k]$ в перестановке чисел от 1 до $n$
  21. Предложите метод генерации случайной перестановки порядка $n$ с равновероятным распределением всех перестановок, если мы умеем генерировать равномерно распределенное целое число от 1 до $k$ для любых небольших $k$ ($k = O(n)$).
  22. Дает ли следующий метод равномерную генерацию всех перестановок? "p = [1, 2, ..., n]; for i from 1 to n: swap(p[i], p[random(1..n)] )"
  23. Дает ли следующий метод равномерную генерацию всех перестановок? "p = [1, 2, ..., n]; for i from 1 to n: swap(p[random(1..n)], p[random(1..n)] )"
  24. Предложите метод генерации случайного сочетания из $n$ по $k$ с равновероятным распределением всех сочетаний, если мы умеем генерировать равномерно распределенное целое число от 1 до $t$ для любых небольших $t$ ($t = O(n)$)
  25. Предложите метод генерации случайного сочетания из $n$ по $k$ с равновероятным распределением всех сочетаний, если мы умеем генерировать равномерно распределенное целое число от 1 до $t$ для любых небольших $t$ ($t = O(n)$), использующий $O(k)$ времени и памяти.
  26. Верно ли, что если $\xi$ и $\eta$ - независимые случайные величины, то таким будут и $f(\xi)$ и $g(\eta)$ для любых функций $f$ и $g$?
  27. Постройте случайную величину, имеющую конечное математическое ожидание и бесконечную дисперсию.
  28. Постройте случайную величину, имеющую бесконечное математическое ожидание и конечную дисперсию.
  29. Улучшить неравенство Маркова в общем случае нельзя. Докажите, что для любого $c > 1$ найдется такая неотрицательная случайная величина $\xi$, что $P(\xi \ge cE\xi) = 1/c$.
  30. Можно ли подобрать такую неотрицательную случайную величину $\xi$, чтобы для двух различных $c_1 > 1$ и $c_2 > 1$ выполнялось $P(\xi \ge c_iE\xi) = 1/c_i$ ($i \in \{1, 2\}$)?
  31. Для какого максимального $\alpha$ можно подобрать такую неотрицательную случайную величину $\xi$, чтобы для двух различных $c_1 > 1$ и $c_2 > 1$ выполнялось $P(\xi \ge c_iE\xi) = \alpha/c_i$ ($i \in \{1, 2\}$)?
  32. Улучшить неравенство Чебышева в общем случае нельзя. Докажите, что для любого $c > 0$ найдется такая случайная величина $\xi$, что $P(|\xi - E\xi| \ge c) = D\xi/c^2$.
  33. Оцените вероятность, что значение на игральной кости отличается от матожидания больше чем на 2 с помощью неравенства Чебышева. Насколько точна эта оценка?
  34. Докажите, что вероятность того, что значения на двух одинаково распределенных нечестных игральных костях совпадает, не меньше $1/6$.
  35. Найдите дисперсию следующей случайной величины: число бросков честной монеты до $k$-го выпадения 1.
  36. Перемножим счетное число вероятностных пространств, соответствующих честным монетам. Что получится? Как бы вы ввели на результате вероятностную меру?
  37. Сколько байт в бите?
  38. Докажите, что для монеты энтропия максимальна в случае честной монеты
  39. Докажите, что для $n$ исходов энтропия максимальна если они все равновероятны
  40. Пусть заданы полные системы событий $A = \{a_1, ..., a_n\}$ и $B = \{b_1, ..., b_m\}$. Определим условную энтропию $H(A | B)$ как $-\sum\limits_{i = 1}^m P(b_i) \sum\limits_{j = 1}^n P(a_j | b_i) \log P(a_j | b_i))$. Докажите, что $H(A | B) + H(B) = H(B | A) + H(A)$
  41. Что можно сказать про $H(A | B)$ если $a_i$ и $b_j$ независимы для любых $i$ и $j$?
  42. Что можно сказать про $H(A | A)$?
  43. Зафиксируем любой язык программирования. Колмогоровской сложностью слова $x$ называется величина $K(x)$ - минимальная длина программы на зафиксированном языке программирования, которая на пустом входе выводит $x$. Обозначим длину слова $x$ как $|x|$. Докажите, что $K(x) \le |x| + c$ для некоторой константы $c$.
  44. Предложите семейство слов $x_1, x_2, \ldots, x_n, \ldots$, где $|x_i|$ строго возрастает и выполнено $K(x_i) = o(|x_i|)$.
  45. Предложите семейство слов $x_1, x_2, \ldots, x_n, \ldots$, где $|x_i|$ строго возрастает и выполнено $K(x_i) = o(\log_2 |x_i|)$.
  46. Колмогоровская сложность конкатенации. Докажите, что $K(xy) \le K(x) + K(y) + O(1)$.
  47. Колмогоровская сложность пары. Докажите, что $K(\langle x, y\rangle) \le K(x) + K(y) + O(\log |x|)$.
  48. Колмогоровская сложность и энтропия Шеннона. Для слова $x$, в котором $i$-й символ алфавита встречается $f_i$ раз обозначим как $H(x)$ величину, равную энтропии случайного источника с распределением $p_i = f_i/|x|$. Докажите, что $K(x) \le nH(x) + O(\log n)$.
  49. Докажите, что для любого $c > 0$ найдется слово, для которого $K(x) < c n H(x)$
  50. Петя хочет пойти в кино с вероятностью ровно 1/13, а у него есть только честная монета. Может ли он осуществить свой замысел?
  51. Решите предудыщее задание для любой дроби $0 \le p/q \le 1$.
  52. Постройте схему получения вероятности 1/3 с помощью честной монеты, имеющую минимальное математическое ожидание числа бросков. Докажите оптимальность вашей схемы.
  53. Дана нечестная монета. Придумайте метод определения, какое значение выпадает с большей вероятностью. Вероятность того, что этот способ ошибся, должна быть не больше $0.01$. Оцените количество бросков, которое потребуется, в зависимости от того, насколько $p$ отличается от $1/2$.
  54. Петя и Вася играют в игру. Они бросают честную монету, и выписывают результаты бросков. У каждого из игроков есть критерий победы, выигрывает тот, чей критерий наступит раньше. Петя выигрывает в тот момент, когда результаты последних двух бросков равны 11. Вася выигрывает, когда результаты последних двух бросков равны 00. С какой вероятностью Петя выиграет?
  55. Петя и Вася играют в игру. Они бросают честную монету, и выписывают результаты бросков. У каждого из игроков есть критерий победы, выигрывает тот, чей критерий наступит раньше. Петя выигрывает в тот момент, когда результаты последних трех бросков равны 001. Вася выигрывает, когда результаты последних трех бросков равны 010. С какой вероятностью Петя выиграет?
  56. Можно ли сделать игру в предыдущем задании честной (чтобы вероятности выигрышей оказались равны $1/2$), используя нечестную монету?
  57. Рассмотрим случайное блуждание точки на прямой, пусть точка начинает в точке $p$ ($p$ - целое) и каждую секунду переходит равновероятно на 1 влево или вправо. Точка поглощается в точках 0 и $n$ ($n$ целое, больше $p$). Найдите вероятность поглощения в точке 0.
  58. Для заданной рациональной дроби $p/q$ постройте марковскую цепь, все переходы которой имеют вероятность $1/2$, которая имеет поглощающее состояние с вероятностью поглощения $p/q$.
  59. Для заданной рациональной дроби $p/q$ постройте марковскую цепь, все переходы которой имеют вероятность $1/3$, которая имеет поглощающее состояние с вероятностью поглощения $p/q$.
  60. Для заданной рациональной дроби $p/q$ и целого $n$ постройте марковскую цепь, все переходы которой имеют вероятность $1/n$, которая имеет поглощающее состояние с вероятностью поглощения $p/q$.
  61. Рассмотрим случайное блуждание точки на прямой, пусть точка начинает в точке 0 и каждую секунду переходит равновероятно на 1 влево или вправо. Чему равно математическое ожидание координаты точки после $n$ шагов?
  62. Рассмотрим случайное блуждание точки на прямой, пусть точка начинает в точке 0 и каждую секунду переходит равновероятно на 1 влево или вправо. Докажите, что математическое ожидание максимума координаты точки за $n$ шагов есть $O(\sqrt{n})$. Поясните разницу с предыдущим заданием.
  63. Дана марковская цепь с двумя состояниями и вероятностью перехода из 1 в 2 равной $a$, вероятностью перехода из 2 в 1 равной $b$. Найдите в явном виде $n$-ю степень матрицы переходов.
  64. Предложите алгоритм решения задачи 54 для произвольных выигрышных строк Васи и Пети (работающий за полином от суммы длин этих строк).
  65. Петя и Вася играют в игру. Они бросают честную монету, и выписывают результаты бросков. У каждого из игроков есть критерий победы, выигрывает тот, чей критерий наступит раньше. Петя выигрывает в тот момент, когда результаты последних двух бросков равны 001. Какую строку длины 3 оптмально выбрать Васе, чтобы его вероятность выигрыша была максимальна?
  66. Предложите решение предыдущей задачи для произвольной выигрышной строки Пети (за полином от длины этой строки).
  67. Пусть последовательно генерируется последовательность из 0 и 1 длины $n$. Каждый элемент последовательности определяется с помощью броска честной монеты. Определите, с какой вероятностью некоторый префикс этой последовательности представляет собой запись двоичного числа, которое делится на 3.
  68. Пусть последовательно генерируется последовательность из 0 и 1 длины $n$. Каждый элемент последовательности определяется с помощью броска честной монеты. Предложите алгоритм определния, с какой вероятностью некоторый префикс этой последовательности представляет собой запись двоичного числа, которое делится на $p$ для заданного целого $p$.
  69. Постройте регулярную Марковскую цепь с двумя состояниями и эргодическим распределением $[a, 1-a]$ для заданного $a$.
  70. Постройте регулярную Марковскую цепь с $n$ состояниями и заданным эргодическим распределением.
  71. Пусть $L$ - формальный язык. Докажите, что $(L^*)^* = L^*$
  72. Пусть $R$ и $S$ - языки. Докажите или опровергните, что $(R \cup S)^* = R^* \cup S^*$.
  73. Пусть $R$ и $S$ - языки. Докажите или опровергните, что $(R \cap S)^* = R^* \cap S^*$.
  74. Пусть $R$ и $S$ - языки. Докажите или опровергните, что $(R \cup S)^* = (R^*S^*)^*$.
  75. Пусть $R$ и $S$ - языки. Обозначим как $RS$ язык слов, представимых в виде конкатенации слова из $R$ и слова из $S$ (в этом порядке). Докажите, что $(R\cup S)T=RT \cup ST$, $(R\cap S)T=RT \cap ST$.
  76. Пусть $L$ - язык. Обозначим как $Lc$ язык, который получается из $L$ дописыванием в конец каждому слову символа $c$. Обозначим как $Lc^{-1}$ язык, который получается из $L$ откидыванием всех слов, которые не заканчиваются на $c$, а затем у оставшихся слов откидыванием конечного символа $c$. Докажите или опровергните, что $(Lc)c^{-1}=L$, $(Lc^{-1})c=L$.
  77. Постройте конечный автомат для языка слов над бинарным алфавитом, в которых четность числа 0 равна четности числа 1
  78. Постройте конечный автомат для языка слов над бинарным алфавитом, в которых число нулей кратно 3
  79. Постройте конечный автомат для языка слов над бинарным алфавитом, в которых число нулей не кратно 3. Сделайте вывод из последних двух заданий.
  80. Постройте конечный автомат для языка слов над бинарным алфавитом, в которых нет трех нулей подряд
  81. Постройте конечный автомат для языка слов над бинарным алфавитом, в которых есть три нуля подряд
  82. Постройте конечный автомат для языка слов над бинарным алфавитом, которые представляют собой двоичную запись чисел, кратных 5
  83. Постройте конечный автомат для языка слов над бинарным алфавитом, в которых число нулей кратно 3 и которые представляют собой двоичную запись чисел кратных 5.
  84. Постройте конечный автомат для языка слов над бинарным алфавитом, в которых число нулей кратно 3 или которые представляют собой двоичную запись чисел кратных 5. Сделайте вывод из последних двух заданий.
  85. Постройте конечный автомат для языка слов над бинарным алфавитом, в которых число единиц кратно 3. Сделайте вывод.
  86. Постройте детерминированный конечный автомат для языка слов над бинарным алфавитом, в которых второй символ с конца равен последнему символу.