Левосторонние красно-чёрные деревья — различия между версиями
Строка 36: | Строка 36: | ||
В красно-черных деревьях используется такая операция как <tex>color flip</tex>, которая инвертирует цвет узла и двух его детей. Она не изменяет количество черных узлов при любом обходе от корня до листьев дерева, но может привести к появлению двух последовательных красных узлов. | В красно-черных деревьях используется такая операция как <tex>color flip</tex>, которая инвертирует цвет узла и двух его детей. Она не изменяет количество черных узлов при любом обходе от корня до листьев дерева, но может привести к появлению двух последовательных красных узлов. | ||
[[File: ColorFlip.png|400px|thumb|upright| Color Flip]] | [[File: ColorFlip.png|400px|thumb|upright| Color Flip]] | ||
− | + | ||
'''void''' flipColors( h : '''Node''' h) : | '''void''' flipColors( h : '''Node''' h) : | ||
h.color = '''!''' h.color | h.color = '''!''' h.color | ||
h.left.color = '''!''' h.left.color | h.left.color = '''!''' h.left.color | ||
h.right.color = <tex> !</tex> h.right.color | h.right.color = <tex> !</tex> h.right.color | ||
− | + | ||
==Методы== | ==Методы== | ||
− | + | ||
'''void''' insert( '''key''' : Key, '''value''' : Value ): | '''void''' insert( '''key''' : Key, '''value''' : Value ): | ||
root = insert(root, key, value) | root = insert(root, key, value) | ||
root.color = BLACK | root.color = BLACK | ||
− | |||
− | + | ||
'''Node''' insert( h : '''Node''', key : '''Key''', value : '''Value'''): | '''Node''' insert( h : '''Node''', key : '''Key''', value : '''Value'''): | ||
'''if''' h == ''null'' | '''if''' h == ''null'' | ||
Строка 70: | Строка 69: | ||
h = rotateRight(h) | h = rotateRight(h) | ||
'''return''' ''h'' | '''return''' ''h'' | ||
− | |||
− | + | ||
'''Value''' search(key : '''Key'''): | '''Value''' search(key : '''Key'''): | ||
'''Node''' x = root | '''Node''' x = root | ||
Строка 86: | Строка 84: | ||
x = x.right | x = x.right | ||
'''return''' ''null'' | '''return''' ''null'' | ||
− | + | ||
==Удаление== | ==Удаление== |
Версия 22:51, 13 марта 2018
Определение: |
Left-leaning Red-Black Trees — модификация красно-черных деревьев, имеющая ряд преимуществ на классической структурой. Разработана Робертом Соджевиском в 2008 году. |
Преимущества
- необходимо менее 80 строчек кода для реализации структуры
- более быстрая вставка, удаление элементов
- простота
Вращения
Чтобы поддерживать красно-черные двоичное деревья поиска необходимо соблюдать следующие инвариантные свойства при вставке и удалении:
- Ни один обход от корня до листьев дерева не содержит двух последовательных красных узлов.
- Количество черных узлов на каждом таком пути одинаково.
Из этих инвариантов следует, что длина каждого пути от корня до листьев в красно-черном дереве с
узлами не превышает .Основные операции, используемые алгоритмами сбалансированного дерева для поддержания баланса при вставке и удалении, называются вращениями. Эти операции трансформируют
-узел,левый потомок которого окрашен в красный, в -узел, правый потомок которого окрашен в красный и наоборот. Вращения сохраняют два указанных выше инварианта, не изменяют поддеревья узла.=Реализация
Node rotateRight( h : Node) : x = h.left h.left= x.right x.right= h x.color = h.color h.color = RED return x
Node rotateLeft( h : Node) : x = h.right h.right = x.left x.left = h x.color = h.color h.color = RED return x
Переворот цветов
В красно-черных деревьях используется такая операция как
, которая инвертирует цвет узла и двух его детей. Она не изменяет количество черных узлов при любом обходе от корня до листьев дерева, но может привести к появлению двух последовательных красных узлов. void flipColors( h : Node h) :
h.color = ! h.color
h.left.color = ! h.left.color
h.right.color =
h.right.color
Методы
void insert( key : Key, value : Value ): root = insert(root, key, value) root.color = BLACK
Node insert( h : Node, key : Key, value : Value): if h == null return new Node(key, value) if isRed(h.left) && isRed(h.right) colorFlip(h) int cmp = key.compareTo(h.key) if cmp == 0 h.val = value else if cmp < 0 h.left = insert(h.left, key, value) else h.right = insert(h.right, key, value) if isRed(h.right) && !isRed(h.left) h = rotateLeft(h) if isRed(h.left) && isRed(h.left.left) h = rotateRight(h) return h
Value search(key : Key):
Node x = root while x != null int cmp = key.compareTo(x.key) if cmp == 0 return x.val else if cmp < 0 x = x.left else if cmp > 0 x = x.right return null
Удаление
f cient implementation of the delete operation is a challenge in many symbol-table implementa- tions, and red-black trees are no exception. Industrial-strength implementations run to over 100 lines of code, and text books generally describe the operation in terms of detailed case studies, eschewing full implementations. Guibas and Sedgewick presented a delete implementation in [7], but it is not fully speci ed and depends on a call-by-reference approach not commonly found in modern code. The most popular method in common use is based on a parent pointers (see [6]), which adds substantial overhead and does not reduce the number of cases to be handled.
The code on the next page is a full implementation of
void deleteMin() root = deleteMin(root); root.color = BLACK;
Node deleteMin(h : Node) if (h.left == null) return null; if !isRed(h.left) && !isRed(h.left.left) h = moveRedLeft(h); h.left = deleteMin(h.left); return fixUp(h);
Delete-the-minimum code for LLRB 2-3 trees
void deleteMin(): root = deleteMin(root) root.color = BLACK
Node deleteMin( h : Node): if h.left == null return null if !isRed(h.left) && !isRed(h.left.left) h = moveRedLeft(h) h.left = deleteMin(h.left) return fixUp(h)
Node moveRedLeft(Node : h): colorFlip(h): if isRed(h.right.left) h.right = rotateRight(h.right) h = rotateLeft(h) colorFlip(h) return h
Node moveRedRight(h :Node ): colorFlip(h) if isRed(h.left.left)) h = rotateRight(h) colorFlip(h) return h
void delete(key : Key): root = delete(root, key) root.color = BLACK
Node delete(Node : h, Key : key): if key.compareTo(h.key) < 0) if !isRed(h.left) && !isRed(h.left.left) h = moveRedLeft(h) h.left = delete(h.left, key) else if isRed(h.left) h = rotateRight(h) if key.compareTo(h.key) == 0 && (h.right == null) return null if !isRed(h.right) && !isRed(h.right.left) h = moveRedRight(h) if key.compareTo(h.key) == 0 h.val = get(h.right, min(h.right).key) h.key = min(h.right).key h.right = deleteMin(h.right) else h.right = delete(h.right, key) return fixUp(h)