Алгоритм Баума-Велша — различия между версиями
(→Пример) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
__TOC__ | __TOC__ | ||
'''Алгоритм Баума-Велша''' (англ. ''Baum–Welch algorithm'') — алгоритм для нахождения неизвестных параметров [[Скрытые_Марковские_модели | скрытой Марковской модели]]. Использует [[Алгоритм_"Вперед-Назад" | алгоритм прямого-обратного хода]]. | '''Алгоритм Баума-Велша''' (англ. ''Baum–Welch algorithm'') — алгоритм для нахождения неизвестных параметров [[Скрытые_Марковские_модели | скрытой Марковской модели]]. Использует [[Алгоритм_"Вперед-Назад" | алгоритм прямого-обратного хода]]. |
Версия 07:26, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Алгоритм Баума-Велша (англ. Baum–Welch algorithm) — алгоритм для нахождения неизвестных параметров скрытой Марковской модели. Использует алгоритм прямого-обратного хода.
История
Скрытые Марковские модели (англ. Hidden Markov Models, HMMs) и алгоритм Баума-Велша впервые были описаны в заметках Леонарда Баума и его сверстников в конце годов. Одно из первых основных приложений на основе HMMs было использовано в области обработки речи. В годах HMMs стали эффективным инструментом в анализе биологических систем и информации, особенно в генном анализе.
Описание алгоритма
Пусть
— это дискретная случайная переменная, принимающая одно из значений . Будем полагать, что данная модель Маркова, определенная как однородна по времени, то есть независима от . Тогда можно задать как независящую от времени стохастическую матрицу перемещений . Особый случай для времени определяется начальным распределением .Будем считать, что мы в состоянии
в момент времени , если . Последовательность заданных состояний определяется как , где является состоянием в момент времени .Наблюдение может иметь одно из
возможных значений, . Вероятность заданного вектора наблюдений в момент времени для состояния определяется как — это матрица на . Заданная последовательность наблюдений выражается как .Следовательно, мы можем описать скрытую модель Маркова с помощью
. При заданном векторе наблюдений алгоритм Баума-Велша находит . максимизирует вероятность наблюдений .
Исходные данные:
со случайными начальными условиями. Алгоритм итеративно обновляет параметр до схождения в одной точке.
Прямая процедура
, что является вероятностью получения заданной последовательности для состояния в момент времени .
можно вычислить рекурсивно:
;
.
Обратная процедура
Данная процедура позволяет вычислить вероятность конечной заданной последовательности
при условии, что мы начали из исходного состояния , в момент времени .можно вычислить рекурсивно:
;
.
Обновление переменных
Определим временные переменные:
.
Имея
и , можно определить:,
,
.
Используя новые переменные
итерации продолжаются до схождения.Пример
Предположим, у нас есть курица, с которой мы собираем яйца. Снесла ли курица яйца — зависит от некоторых неизвестных факторов. Для простоты предположим, что существуют лишь два состояния, которые определяют есть ли яйца. В начальный момент нам неизвестно текущее состояние, также нам неизвестна вероятность перехода из одного состояния в другое. Для начала возьмем произвольные матрицы переходов и состояний.
|
|
|
Рассмотрим набор наблюдений (
— яйца отложены, — яйца не отложены): .Следующим шагом оценим новую матрицу переходов:
Последовательность | Вероятность последовательности и состояний | Наибольшая вероятность наблюдения |
---|---|---|
Итог |
Таким образом получаем новую оценку перехода из
в , которая составляет . После этого можно подсчитать вероятность переходов из в , в , в и изменим их так, чтобы в суммы вероятностей давали . В итоге получаем новую матрицу переходов:
|
|
|
Далее оценим новую матрицу состояний:
Последовательности | Наибольшая вероятность наблюдения Если допустимо, что E получено из |
Наибольшая вероятность наблюдения |
---|---|---|
Итог |
Новая оценка для
, полученная из , составляет .Благодаря этому, возможно рассчитать матрицу состояний:
|
|
|
Для оценки начальной вероятности, мы предполагаем, что все последовательности начаты со скрытого состояния
и рассчитаны с высокой вероятностью, а затем повторяем для . После нормализации получаем обновленный исходный вектор.Повторяем эти шаги до тех пор, пока вероятности не сойдутся.
Псевдокод
// T — конечный момент времени int[] DynamicOptionalStateSequance(, d): double [1, i] = [i] * b[i, d[1]] int [1, i] = [] int ans[] for t = 2 to T for i = 1 to n if [t, j] < [t - 1, i] * a[i, j] * b[j, d[t]] [t, j] = [t - 1, i] * a[i, j] * b[j, d[t]] [t, j] = i ans[T] = 1 for i = 2 to n if [T, i] > [T, i - 1] ans[T] = i for t = T - 1 downto 1 ans[t] = [t + 1, ans[t + 1]] return ans