(Метки: правка с мобильного устройства, правка из мобильной версии) |
(Метки: правка с мобильного устройства, правка из мобильной версии) |
Строка 68: |
Строка 68: |
| | <tex>\dfrac{\zeta(s)\zeta(s-1)}{\zeta(2s)}</tex> || <tex>\psi(n)</tex> || <tex>1, 3, 4, 6, 6, 12, 8, 12, \dots</tex>----------------> | | | <tex>\dfrac{\zeta(s)\zeta(s-1)}{\zeta(2s)}</tex> || <tex>\psi(n)</tex> || <tex>1, 3, 4, 6, 6, 12, 8, 12, \dots</tex>----------------> |
| |} | | |} |
− |
| |
− | == Операции ==
| |
− |
| |
− | === Умножение ===
| |
− |
| |
− | Если <tex>A(s)</tex> и <tex>B(s)</tex> — производящие функции Дирихле двух последовательностей <tex>\{a_n\}_{n=1}^\infty</tex> и <tex>\{b_n\}_{n=1}^\infty</tex> соответственно, то <tex>A(s)B(s) = \dfrac{a_1b_1}{1^s} + \dfrac{a_1b_2 + a_2b_1}{2^s} + \dfrac{a_1b_3 + a_3b_1}{3^s} + \dfrac{a_1b_4 + a_2b_2 + a_4b_1}{4^s} + \dots = \sum\limits_{n} \dfrac{\sum\limits_{kl=n} {a_kb_l}}{n^s}</tex>, где внутренние суммирование ведется по всем разложением числа <tex>n</tex> в произведение двух сомножителей. Таким образом, использование производящих функций Дирихле позволяет контролировать мультипликативную структуру натуральных чисел.
| |
− | === Сложение ===
| |
− |
| |
− | Сложение производящих функций соответствует обычному почленному сложению последовательностей.
| |
− |
| |
− | === Единица ===
| |
− |
| |
− | Роль единицы при умножении производящих функций Дирихле играет функция <tex>1 = 1 ^ {-s}</tex>.
| |
− |
| |
− | === Обратимость ===
| |
− |
| |
− | Любая производящая функция Дирихле <tex>A(s)</tex> с ненулевым свободным членом, <tex>a_1 \neq 0</tex>, обратима: для нее существует функция <tex>B(s)</tex>, такая что <tex>A(s)B(s) = 1</tex>.
| |
− |
| |
− | Действительно, по правилу перемножения функций имеем <tex>A(s)B(s) = \dfrac{a_1b_1}{1^s} + \dfrac{a_1b_2 + a_2b_1}{2^s} + \dfrac{a_1b_3 + a_3b_1}{3^s} + \dfrac{a_1b_4 + a_2b_2 + a_4b_1}{4^s} + \dots = \sum\limits_{n} \dfrac{\sum\limits_{kl=n} {a_kb_l}}{n^s}</tex>, что в нашем случае равно <tex>1 = 1 ^ {-s}</tex>. Получаем, что <tex>a_1b_1 = 1</tex>, тогда <tex>b_1 = \dfrac{1}{a_1}</tex>. Остальные слагаемые равны <tex>0</tex>. Рассмотрим их. Известно, что коэффициент перед <tex>\dfrac{1}{n^s}</tex> равен <tex>\sum\limits_{kl=n} {a_kb_l} = {a_1b_n} + \sum\limits_{kl=n,k\neq 1} {a_kb_l}</tex>. Отсюда <tex>{b_n} = -\dfrac{\sum\limits_{kl=n,k\neq 1} {a_kb_l}}{a_1}</tex>.
| |
− |
| |
− | <!----
| |
− |
| |
− | Attention!
| |
− | Можно привести доказательство теоремы об обратной функции для дзета-функции Римана <!---лол, это была не я. (МК)//узковат кругозор у Вас, мужик, неприятненько было убирать за Вами :с --->
| |
| | | |
| ==Свойства производящих функций Дирихле== <!-------xz как назвать, потом придумаю)))-------> | | ==Свойства производящих функций Дирихле== <!-------xz как назвать, потом придумаю)))-------> |
Определение: |
Производящая функция Дирихле (англ. Dirichlet generating functions) последовательности [math]\{a_n\}_{n=1}^{\infty}[/math] — это формальный ряд вида:
[math]A(s)= \dfrac{a_1}{1^s} + \dfrac{a_2}{2^s} + \dfrac{a_3}{3^s} + \dots = \sum\limits_{n=1}^\infty \dfrac{a_n}{n^s}[/math],
|
Примечание
- Нумерация коэффициентов производящих функций Дирихле начинается с единицы, а не с нуля, как это было в случае обыкновенных производящих функций.
- Вместо переменной [math]x[/math] используется [math]s[/math]. Это изменение связано больше с традициями, чем с математикой.
- Принято писать [math] \dfrac{a_n}{n^s} [/math] вместо [math] {a_n}{n^{-s}} [/math]. Это считается более удобной формой.
Применение
Производящие функции Дирихле используются в мультипликативной теории чисел. Введение производящей функции Дирихле обусловлено их поведением относительно умножения, что позволяет контролировать мультипликативную структуру натуральных чисел.
Определение: |
Мультипликативная функция (multiplicative function) — функция [math]f(m)[/math], такая что
- [math]f(m_1 m_2) = f(m_1)f(m_2)[/math] для любых чисел [math]m_1[/math] и [math]m_2[/math]
- [math]f(1)=1[/math].
|
Утверждение: |
Последовательность [math] \{a_n\}_{n=1}^{\infty} [/math] является мультипликативной тогда и только тогда, когда соответствующая ей производящая функция Дирихле имеет вид
[math]A(s)= \prod\limits_p(1 + \sum\limits_{n=1}^\infty \dfrac{a_p}{p^ns})[/math], где [math]p[/math] принимает все простые значения. |
Примеры
Самой известной среди производящих функций Дирихле является дзета-функция Римана.
Определение: |
Дзета-функция Римана (англ. The Riemann zeta function) — производящая функция Дирихле, отвечающая последовательности [math] \{a_n\}_{n=1}^{\infty} [/math], состоящей из единиц:
[math]\zeta (s)={\dfrac {1}{1^{s}}}+{\dfrac {1}{2^{s}}}+{\dfrac {1}{3^{s}}}+\ldots ,[/math]
|
Таблица содержит известные производящие функции. Первая из них — это дзета-функция Римана, состоящая из единиц. [math][\zeta(s)]^2[/math] является последовательностью количества делителей числа[1]. [math]\mu(n)[/math] — последовательность Мёбиуса [2]. [math]H(n)[/math] — последовательность факторизаций числа, [math]\phi(n)[/math] — функция Эйлера.
[math]f(s)[/math] |
Последовательность |
[math]{a_n}[/math]
|
[math]\zeta(s)[/math] |
[math]1[/math] |
[math]1, 1, 1, 1, 1, 1, 1, 1, \dots[/math]
|
[math]1/\zeta(s)[/math] |
[math]\mu(n)[/math] |
[math]1, -1, -1, 0, -1, 1, -1, 0, \dots[/math]
|
[math][\zeta(s)]^2[/math] |
[math]d(n)[/math] |
[math]1, 2, 2, 3, 2, 4, 2, 4, \dots[/math]
|
[math]\dfrac{\zeta(s-1)}{\zeta(s)}[/math] |
[math]\phi(n)[/math] |
[math]1, 1, 2, 2, 4, 2, 6, 4, \dots[/math]
|
[math]\dfrac{1}{[2-\zeta(s)]}[/math] |
[math]H(n)[/math] |
[math]1, 1, 1, 2, 1, 3, 1, 4, \dots[/math]
|
Свойства производящих функций Дирихле
Теорема: |
Функция Мёбиуса имеет вид:
[math]M(s) = \dfrac{1}{\zeta(s)} = \sum\limits_{k=1}^{\infty} \dfrac{\mu_n}{n^s}[/math], где
[math]\mu_n = \begin{cases}
(-1)^{t_n} \\
0
\end{cases}[/math] |
Доказательство: |
[math]\triangleright[/math] |
Перемножим функции [math]M(s)[/math] и [math]\zeta(s)[/math] и рассмотрим коэффициент при [math]n^{-s}[/math]. Назовём его [math]f_n[/math]. Тогда
[math]f_n = \sum\limits_{k=0}^{t_n}(-1)^{k}\cdot\dbinom{t_n}{k}[/math].
Действительно, пусть разложение n на простые множители имеет вид [math]n = p^{k_1}_1\cdot\ldots\cdot p^{k_{t_n}}_{t_n}[/math]. Тогда коэффициент при [math]m^{−s}[/math] функции [math]M(s)[/math] участвует в произведении с ненулевым коэффициентом в том и только в том случае, если [math]m[/math]является произведением некоторого подмножества множества простых чисел [math]n = p_1\ldots p_{t_n}[/math]. Число таких подмножеств из [math]k[/math] элементов равно [math]\dbinom{t_n}{k}[/math], а знак соответствующего коэффициента при [math]m^{−s}[/math] равен [math](-1)^{k}[/math]. |
[math]\triangleleft[/math] |
Теорема: |
Пусть [math]f_n,g_n[/math] такие, что [math]f_n = \sum\limits_{n\vdots k} g_k[/math]. Тогда [math]g_n = \sum\limits_{n\vdots k} \mu_k\cdot f_k[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Равенство [math]f_n = \sum\limits_{n\vdots k} g_k[/math] означает, что [math]F(s) = \zeta(s)\cdot G(s)[/math], где [math]F(s),G(s)[/math] — производящие функции Дирихле для последовательностей [math]\{f_n\}_{n=1}^{\infty}[/math] и [math]\{g_n\}_{n=1}^{\infty}[/math] соответственно. Домножим левую и правую части на [math]M(s)[/math]. Получаем [math]M(s)\cdot F(s) = M(s)\cdot\zeta(s)\cdot G(s)[/math], а правая часть равна [math]G(s)[/math] по предыдущей теореме. |
[math]\triangleleft[/math] |
Утверждение: |
[math]\zeta(s) = \prod\limits_{p} \dfrac{1}{1 - p^{-s}}[/math], где [math]p[/math] принимает все простые значения. |
См. также
Примечания
Источники информации