Математическое ожидание времени поглощения — различия между версиями
Vsklamm (обсуждение | вклад) |
Vsklamm (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | + | {{Утверждение | |
− | |||
− | == | + | |statement=Математическое ожидание времени поглощения можно посчитать как сумму всех элементов вектора <tex> v </tex>, где <tex> v[j] </tex> - среднее количество раз, которое мы побываем в состоянии <tex> j </tex>. |
− | Пусть <tex> b_0 </tex> - вектор вероятностей начальных состояний, то есть <tex> b_0[j] </tex> - вероятность для цепи Маркова начать в состоянии <tex> j </tex>. Определим <tex> b_r[j] </tex> как вероятность находиться в состоянии <tex> j </tex> после первых <tex> r </tex> шагов. | + | |
+ | |proof=Пусть <tex> b_0 </tex> - вектор вероятностей начальных состояний, то есть <tex> b_0[j] </tex> - вероятность для цепи Маркова начать в состоянии <tex> j </tex>. Определим <tex> b_r[j] </tex> как вероятность находиться в состоянии <tex> j </tex> после первых <tex> r </tex> шагов. | ||
За значение случайной величины в формуле [[Математическое ожидание случайной величины|математического ожидания]] <tex> E\xi = \sum \xi(\omega)p(\omega) </tex> примем <tex> \xi = \left\{ | За значение случайной величины в формуле [[Математическое ожидание случайной величины|математического ожидания]] <tex> E\xi = \sum \xi(\omega)p(\omega) </tex> примем <tex> \xi = \left\{ | ||
\begin{array}{ll} | \begin{array}{ll} | ||
Строка 17: | Строка 17: | ||
Отсюда <tex> v = b_0 \sum\limits_{t = 0}^{r}Q^{t} = b_0 N</tex>, где <tex> N </tex> - [[фундаментальная матрица|фундаментальная матрица]]. | Отсюда <tex> v = b_0 \sum\limits_{t = 0}^{r}Q^{t} = b_0 N</tex>, где <tex> N </tex> - [[фундаментальная матрица|фундаментальная матрица]]. | ||
+ | }} | ||
==См. также== | ==См. также== |
Версия 23:19, 5 апреля 2018
Утверждение: |
Математическое ожидание времени поглощения можно посчитать как сумму всех элементов вектора , где - среднее количество раз, которое мы побываем в состоянии . |
Пусть математического ожидания примем . После шагов (доказательство аналогично части теоремы о поглощении). - вектор вероятностей начальных состояний, то есть - вероятность для цепи Маркова начать в состоянии . Определим как вероятность находиться в состоянии после первых шагов. За значение случайной величины в формулеПусть цепь Маркова находится в состоянии за первые шагов. Рассмотрим : - количество раз, котороеОтсюда . , где - фундаментальная матрица. |
См. также
Источники информации
- Кемени Дж., Снелл Дж. Конечные цепи Маркова. — М. : Наука, 1970. — 272 c.