Представление производящей функций в виде непрерывных дробей — различия между версиями
Строка 6: | Строка 6: | ||
{{Определение | {{Определение | ||
|definition='''Конечная непрерывная дробь''' (англ. ''finite continued fraction'') — это непрерывная дробь, которая состоит из конечного набора <tex>\langle a_0, a_1, a_2, a_3,\ldots, a_n \rangle</tex> и <tex>\langle b_0, b_1, b_2, b_3,\ldots, b_n \rangle.</tex>}} | |definition='''Конечная непрерывная дробь''' (англ. ''finite continued fraction'') — это непрерывная дробь, которая состоит из конечного набора <tex>\langle a_0, a_1, a_2, a_3,\ldots, a_n \rangle</tex> и <tex>\langle b_0, b_1, b_2, b_3,\ldots, b_n \rangle.</tex>}} | ||
+ | ==Свойства== | ||
+ | #Любая конечная дробь представима в виде некоторой рациональной дроби <tex>\cfrac{P_n}{Q_n}</tex>, которую называют '''n-ой подходящей дробью'''. | ||
+ | #Всякий многочлен или дробно-рациональная функция может быть разложена в непрерывную дробь<ref>{{Хованский А. Н. Приложения цепных дробей и их обобщений к #:вопросам приближённого анализа (главы 1 и 2) М. Гостехиздат 1956}}</ref>: | ||
+ | #: | ||
+ | #:<tex>\cfrac{b_1}{a_1+\cfrac{b_2 x}{a_2+\cfrac{b_3 x}{a_3+\ldots}}}\;</tex> | ||
+ | #: | ||
+ | #:Например для функции <tex>f(x)=\displaystyle\frac{1-x}{1-5x+6x^2}</tex>: | ||
+ | #: | ||
+ | #:<tex>f(x)=\cfrac{1}{1-\cfrac{4 x}{1-\cfrac{2 x}{-4+6x}}}\;</tex> | ||
+ | #: | ||
+ | #Любая рациональная функция раскладывается в конечную непрерывную дробь. | ||
+ | |||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | + | [[Теорема_о_связи_между_рациональностью_производящей_функции_и_линейной_рекуррентностью_задаваемой_ей_последовательности| Дробно-рациональная производящая функция]] всегда раскладывается в конечную непрерывную дробь. | |
}} | }} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Функция Каталана в виде непрерывной дроби== | ==Функция Каталана в виде непрерывной дроби== |
Версия 13:21, 18 апреля 2018
Содержание
Определения
Определение: |
Непрерывная дробь (англ. continued fraction) — это бесконечное математическое выражение вида
где и есть целые числа, а — натуральные числа (положительные целые). |
Определение: |
Конечная непрерывная дробь (англ. finite continued fraction) — это непрерывная дробь, которая состоит из конечного набора | и
Свойства
- Любая конечная дробь представима в виде некоторой рациональной дроби , которую называют n-ой подходящей дробью.
- Всякий многочлен или дробно-рациональная функция может быть разложена в непрерывную дробь[1]:
- Например для функции :
- Любая рациональная функция раскладывается в конечную непрерывную дробь.
Утверждение: |
Дробно-рациональная производящая функция всегда раскладывается в конечную непрерывную дробь. |
Функция Каталана в виде непрерывной дроби
Производящая функция для чисел Каталана удовлетворяет квадратному уравнению
Перепишем это уравнение в виде
или
Подставив выражение для
из левой части равенства в правую часть того же равенства, получим
Подставляя вновь выражение для
в получившееся равенство и продолжая этот процесс, мы получаем представление для функции Каталана в виде непрерывной дроби:
Полученное разложение нужно понимать следующим образом. Если мы оборвем непрерывную дробь на
-м шаге (оставив вместо нее конечную непрерывную дробь, которая представляет собой рациональную функцию), то коэффициенты разложения полученной функции по степеням будут совпадать с коэффициентами разложения функции вплоть до члена . Заметим, что из-за наличия множителя в числителе очередной дроби, присоединяемой на -м шаге, увеличение числа членов в непрерывной дроби не приводит к изменению первых коэффициентов в ее разложении. Например,
Стабилизирующаяся часть разложения выделена.