Процесс Каратеодори — различия между версиями
| Stardust (обсуждение | вклад)  (→Теорема Каратеодори) | |||
| Строка 1: | Строка 1: | ||
| + | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
| + | |+ | ||
| + | |-align="center" | ||
| + | |'''НЕТ ВОЙНЕ''' | ||
| + | |-style="font-size: 16px;" | ||
| + | | | ||
| + | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
| + | |||
| + | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
| + | |||
| + | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
| + | |||
| + | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
| + | |||
| + | ''Антивоенный комитет России'' | ||
| + | |-style="font-size: 16px;" | ||
| + | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
| + | |-style="font-size: 16px;" | ||
| + | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
| + | |} | ||
| + | |||
| [[Мера, порожденная внешней мерой|<<]] [[Объём n-мерного прямоугольника|>>]] | [[Мера, порожденная внешней мерой|<<]] [[Объём n-мерного прямоугольника|>>]] | ||
Версия 07:54, 1 сентября 2022
| НЕТ ВОЙНЕ | 
| 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России | 
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | 
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. | 
Мы уже построили по мере на полукольце множеств внешнюю меру, а по ней - меру на σ-алгебре. Следующая теорема показывает, что при ее сужении на то полукольцо мы получим исходную меру.
Содержание
Теорема Каратеодори
| Теорема (Каратеодори): | 
| Пусть построения  были выполнены так, как описывалось в предыдущих параграфах. Тогда:
 | 
| Доказательство: | 
| Если мы докажем, что , то есть, любое множество из полукольца хорошо разбивает любое другое, то, взяв любое , так как , получим . Но и порождена (), то есть, . Значит, , и второй пункт вытекает из первого. Докажем первый пункт. Для этого нам нужно показать, что для любого выполнялось , тогда хорошо разбивает любое множество (обратное неравенство, очевидно, выполняется по определению внешней меры) и принадлежит σ-алгебре. Если , то неравенство тривиально, поэтому считаем, что . Воспользуемся тем, что порождена : 
 Пересекаем это включение с 
 По аксиомам полукольца, . Значит, мы получили покрытие этого множества элементами полукольца. Тогда, по определению , порождённой : 
 При пересечении с получим . Однако, здесь нет гарантий, что . , Тогда, по аксиомам полукольца, — дизъюнктны в . , все — из полукольца. Значит, покрывается элементами полукольца, так как порождена . 
 — из полукольца. Таким образом, разбивается в дизъюнктное объединение множеств из . Отсюда, по -аддитивности меры, 
 
 Тогда, Складывая с предыдущим неравенством, получаем: При получаем требуемое неравенство. | 
Некоторые свойства полученной меры
Установим некоторые свойства полученной меры
| Определение: | 
| Полученная мера — стандартное распространение по Каратеодори меры с полукольца на -алгебру. | 
Мы рассматриваем сигма-алгебру -измеримых множеств.
Полнота
| Утверждение (полнота): | 
| Подмножество нульмерного множества само измеримо и нульмерно. | 
| Пусть , , , Проверим, что 
 Тогда, по монотонности внешней меры, , Значит, неравенство выполняется. Значит, , то есть измеримо.По монотонности меры, . . | 
Можно считать, что распространение с на -алгебру приводит к полной мере.
Непрерывность
| Утверждение: | 
| Пусть ; ,  — -измеримы, . Тогда  | 
| В силу написанного выше ясно, что . Последнее множество нульмерно. Значит, по полноте меры, . Тогда, , так как . | 
Следствие
| Утверждение (Критерий -измеримости): | 
| Пусть . Тогда  — -измеримо     | 
| Возьмём , , , Так как мы работаем с -алгеброй, то и тоже измеримы. Так как , то . 
 Тогда, по монотонности меры, . 
 Мы нашли пару измеримых множеств, между которыми вставлено . . Значит, по непрерывности , утверждение верно.Обратное верно, так как можно взять . | 
Процесс Каратеодори
Забавно: .
Построим — внешняя мера для (-алгебра — частный случай полукольца). Возникает вопрос: "Построили ли мы что-то новое?"
| Теорема: | 
|  (повторное применение процесса Каратеодори не приводит нас к новой мере). | 
| Доказательство: | 
| строилось на базе покрытий из , . строится на базе покрытий из . Это значит, что покрытий стало больше, то есть, Осталось доказать, что Если новая мера бесконечна, то неравенство очевидно. Тогда, пусть она конечна. Раз она порождена , есть система измеримых множеств , , 
 В частности, Но , и, раз она конечна и порождена мерой , то , Отсюда, в частности, получается, что . Заменяя каждое слагаемое ряда меньшей величиной, получаем: 
 
 , (по определению ). Сопоставляя с предыдущим неравенством,Устремляя к нулю, побеждаем. | 
