Асимптотика гипергеометрических последовательностей — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
м
Строка 13: Строка 13:
 
<br>
 
<br>
 
Для доказательства существования предела (4.5) применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна. Фундаментальность последовательности означает, что для любого <tex>\epsilon>0</tex> существует такой номер N, что для всех n > N и всех положительных m
 
Для доказательства существования предела (4.5) применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна. Фундаментальность последовательности означает, что для любого <tex>\epsilon>0</tex> существует такой номер N, что для всех n > N и всех положительных m
 +
<br>
 +
<tex>|\ln {a_{n+m}} - \ln {a_n} - (n+m)\ln A + n\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|<\epsilon</tex>,
 +
<br>
 +
или
 +
<br>
 +
<tex>|\ln {a_{n+m}} - \ln {a_n} - m\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|<\epsilon</tex>.
 +
<br>
 +
Перепишем отношение <tex>\frac{a_{n+1}}{a_n}</tex> в виде
 +
<br>
 +
<tex>\frac{a_{n+1}}{a_n}=A\frac{1+\alpha_1 n^{-1}+...+\alpha_k n^{-k}}{1+\beta_1 n^{-1}+...+\beta_k n^{-k}}=Af(\frac{1}{n})</tex>,
 +
<br>
 +
где
 +
<br>
 +
<tex>f(x)=\frac{1+\alpha_1 x+...+\alpha_k x^k}{1+\beta_1 x+...+\beta_k x^k}</tex>
 +
<br>
 +
Прологарифмировав (4.7), получаем
 +
<br>
 +
<tex>\ln a_{n+1} - \ln a_n = \ln A + \ln f(\frac{1}{n})</tex>.
 +
<br>
 +
Посмотрим на функцию <tex>\ln f(x)</tex>. Выпишем начальные члены разложения функции f, определенной формулой (4.8), в ряд в точке 0:
 +
<br>
 +
<tex>f(x)=1+(\alpha_1-\beta_1)x+\gamma x^2+...</tex> для некоторой константы <tex>\gamma</tex>. Это разложение - самый существенный элемент доказательства. Именно коэффициент <tex>\alpha_1 - \beta_1</tex>(отличный от нуля по предположению теоремы) при линейном члене указывает на присутствие сомножителя <tex>n^{\alpha_1-\beta_1}</tex> в асимптотике. Для логарифма функции f имеем <tex>\ln f(x)=(\alpha_1-\beta_1)x+\overline{\gamma}x^2+...</tex>. Поэтому для некоторой постоянной C при достаточно маленьком x имеем
 
}}
 
}}
  

Версия 00:18, 4 мая 2018

Определение:
Гипергеометрической называется последовательность, степени многочленов которой больше нуля.


Лемма:
Пусть последовательность [math]a_0,a_1[/math],... положительных чисел такова, что [math]\frac{a_{n+1}}{a_{n}}=A\frac{n^k+\alpha_1n^{k-1}+...+\alpha_k}{n^k+\beta_1n^{k-1}+...+\beta_k}[/math] для всех достаточно больших n, причем [math]\alpha_1\ne \beta_1[/math]. Тогда [math]a_n[/math] растет как [math]a_n\sim cA^nn^{\alpha_1-\beta_1}[/math] для некоторой постоянной [math]c\gt 0[/math].
Доказательство:
[math]\triangleright[/math]

Утверждение леммы эквивалентно тому, что существует предел [math]\lim {\frac{a_n}{A^n n^{\alpha_1-\beta_1}}}[/math].
Прологарифмировав, мы приходим к необходимости доказать существование предела [math]\lim_{n \to \infty} \ln {a_n} - n \ln A - (\alpha_1 - \beta_1)\ln n[/math].
Для доказательства существования предела (4.5) применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна. Фундаментальность последовательности означает, что для любого [math]\epsilon\gt 0[/math] существует такой номер N, что для всех n > N и всех положительных m
[math]|\ln {a_{n+m}} - \ln {a_n} - (n+m)\ln A + n\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|\lt \epsilon[/math],
или
[math]|\ln {a_{n+m}} - \ln {a_n} - m\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|\lt \epsilon[/math].
Перепишем отношение [math]\frac{a_{n+1}}{a_n}[/math] в виде
[math]\frac{a_{n+1}}{a_n}=A\frac{1+\alpha_1 n^{-1}+...+\alpha_k n^{-k}}{1+\beta_1 n^{-1}+...+\beta_k n^{-k}}=Af(\frac{1}{n})[/math],
где
[math]f(x)=\frac{1+\alpha_1 x+...+\alpha_k x^k}{1+\beta_1 x+...+\beta_k x^k}[/math]
Прологарифмировав (4.7), получаем
[math]\ln a_{n+1} - \ln a_n = \ln A + \ln f(\frac{1}{n})[/math].
Посмотрим на функцию [math]\ln f(x)[/math]. Выпишем начальные члены разложения функции f, определенной формулой (4.8), в ряд в точке 0:

[math]f(x)=1+(\alpha_1-\beta_1)x+\gamma x^2+...[/math] для некоторой константы [math]\gamma[/math]. Это разложение - самый существенный элемент доказательства. Именно коэффициент [math]\alpha_1 - \beta_1[/math](отличный от нуля по предположению теоремы) при линейном члене указывает на присутствие сомножителя [math]n^{\alpha_1-\beta_1}[/math] в асимптотике. Для логарифма функции f имеем [math]\ln f(x)=(\alpha_1-\beta_1)x+\overline{\gamma}x^2+...[/math]. Поэтому для некоторой постоянной C при достаточно маленьком x имеем
[math]\triangleleft[/math]

Замечание: Предположения леммы не позволяют определить величину константы c. Действительно, умножив последовательность an на произвольную постоянную d > 0, мы получим новую последовательность с тем же отношением последовательных членов, константа c для которой увеличивается в d раз

Пример. Для чисел Каталана имеем

[math]\frac{c_{n+1}}{c_n}=\frac{4n+2}{n+2}=4\frac{n+\frac{1}{2}}{n+2}[/math]

Поэтому [math]c_n \sim c \cdot 4^n \cdot n^{-\frac{3}{2}}[/math] для некоторой постоянной c.

Пример. Найдем асимптотику коэффициентов для функции [math](a-s)^{\alpha}[/math], где [math]\alpha[/math] вещественно. В ряде случаев эта асимптотика нам уже известна, например, при [math]\alpha=−1[/math]. Согласно определению функции [math](1-s)^{\alpha}[/math] имеем

[math](a-s)^{\alpha}=a^{\alpha}(1-\frac{s}{a})^{\alpha}=a^{\alpha}(1 - \frac{\alpha}{1!} \frac{s}{a} + \frac{\alpha(\alpha-1)}{2!}{(\frac{s}{a})^2} - \frac{\alpha(\alpha-1)(\alpha-2)}{3!}(\frac{s}{a})^3+...)[/math].

Если a — целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае начиная с некоторого номера все коэффициенты ряда (4.3) имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться предыдущей леммой при [math]a_n=(-1)^n \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!{\alpha}^n}[/math]

[math]\frac{a_{n+1}}{a_n}=\frac{1}{a} \frac{n-\alpha}{n+1}[/math]

Поэтому [math]a_n \sim c \cdot a^{-n} \cdot n^{-\alpha-1}[/math]. Например, коэффициенты функции [math]-(1-4s)^{\frac{1}{2}}[/math] ведут себя как [math]c \cdot 4^n \cdot n^{-\frac{3}{2}}[/math], и мы получаем повторный вывод ассимптотики для чисел Каталана.