Асимптотика гипергеометрических последовательностей — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Iksiygrik переименовал страницу Викиконспекты:Асимптотика гипергеометрических последовательностей в [[Асимптотика гипергеометрических…)
м
Строка 11: Строка 11:
 
|proof=
 
|proof=
 
Утверждение леммы эквивалентно тому, что существует предел <tex>\lim {\frac{a_n}{A^n n^{\alpha_1-\beta_1}}}</tex>. <br> Прологарифмировав, мы приходим к необходимости доказать существование предела <tex>\lim_{n \to \infty} \ln {a_n} - n \ln A - (\alpha_1 - \beta_1)\ln n</tex>.
 
Утверждение леммы эквивалентно тому, что существует предел <tex>\lim {\frac{a_n}{A^n n^{\alpha_1-\beta_1}}}</tex>. <br> Прологарифмировав, мы приходим к необходимости доказать существование предела <tex>\lim_{n \to \infty} \ln {a_n} - n \ln A - (\alpha_1 - \beta_1)\ln n</tex>.
<br>
+
 
 
Для доказательства существования предела (4.5) применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна. Фундаментальность последовательности означает, что для любого <tex>\epsilon>0</tex> существует такой номер N, что для всех n > N и всех положительных m
 
Для доказательства существования предела (4.5) применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна. Фундаментальность последовательности означает, что для любого <tex>\epsilon>0</tex> существует такой номер N, что для всех n > N и всех положительных m
<br>
+
 
 
<tex>|\ln {a_{n+m}} - \ln {a_n} - (n+m)\ln A + n\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|<\epsilon</tex>,  
 
<tex>|\ln {a_{n+m}} - \ln {a_n} - (n+m)\ln A + n\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|<\epsilon</tex>,  
<br>
+
 
 
или
 
или
<br>
+
 
 
<tex>|\ln {a_{n+m}} - \ln {a_n} - m\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|<\epsilon</tex>.
 
<tex>|\ln {a_{n+m}} - \ln {a_n} - m\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|<\epsilon</tex>.
<br>
+
 
 
Перепишем отношение <tex>\frac{a_{n+1}}{a_n}</tex> в виде
 
Перепишем отношение <tex>\frac{a_{n+1}}{a_n}</tex> в виде
<br>
+
 
 
<tex>\frac{a_{n+1}}{a_n}=A\frac{1+\alpha_1 n^{-1}+...+\alpha_k n^{-k}}{1+\beta_1 n^{-1}+...+\beta_k n^{-k}}=Af(\frac{1}{n})</tex>,
 
<tex>\frac{a_{n+1}}{a_n}=A\frac{1+\alpha_1 n^{-1}+...+\alpha_k n^{-k}}{1+\beta_1 n^{-1}+...+\beta_k n^{-k}}=Af(\frac{1}{n})</tex>,
<br>
+
 
 
где
 
где
<br>
+
 
 
<tex>f(x)=\frac{1+\alpha_1 x+...+\alpha_k x^k}{1+\beta_1 x+...+\beta_k x^k}</tex>
 
<tex>f(x)=\frac{1+\alpha_1 x+...+\alpha_k x^k}{1+\beta_1 x+...+\beta_k x^k}</tex>
<br>
+
 
 
Прологарифмировав (4.7), получаем  
 
Прологарифмировав (4.7), получаем  
<br>
+
 
 
<tex>\ln a_{n+1} - \ln a_n = \ln A + \ln f(\frac{1}{n})</tex>.
 
<tex>\ln a_{n+1} - \ln a_n = \ln A + \ln f(\frac{1}{n})</tex>.
<br>
+
 
 
Посмотрим на функцию <tex>\ln f(x)</tex>. Выпишем начальные члены разложения функции f, определенной формулой (4.8), в ряд в точке 0:
 
Посмотрим на функцию <tex>\ln f(x)</tex>. Выпишем начальные члены разложения функции f, определенной формулой (4.8), в ряд в точке 0:
<br>
+
 
 
<tex>f(x)=1+(\alpha_1-\beta_1)x+\gamma x^2+...</tex> для некоторой константы <tex>\gamma</tex>. Это разложение - самый существенный элемент доказательства. Именно коэффициент <tex>\alpha_1 - \beta_1</tex>(отличный от нуля по предположению теоремы) при линейном члене указывает на присутствие сомножителя <tex>n^{\alpha_1-\beta_1}</tex> в асимптотике. Для логарифма функции f имеем <tex>\ln f(x)=(\alpha_1-\beta_1)x+\tilde{\gamma}x^2+...</tex>. Поэтому для некоторой постоянной C при достаточно маленьком x имеем <tex>|\ln f(x) = (\alpha_1 - \beta_1)x|<Cx^2</tex>. В частности, если N достаточно велико, то <tex>&forall; n>N</tex>
 
<tex>f(x)=1+(\alpha_1-\beta_1)x+\gamma x^2+...</tex> для некоторой константы <tex>\gamma</tex>. Это разложение - самый существенный элемент доказательства. Именно коэффициент <tex>\alpha_1 - \beta_1</tex>(отличный от нуля по предположению теоремы) при линейном члене указывает на присутствие сомножителя <tex>n^{\alpha_1-\beta_1}</tex> в асимптотике. Для логарифма функции f имеем <tex>\ln f(x)=(\alpha_1-\beta_1)x+\tilde{\gamma}x^2+...</tex>. Поэтому для некоторой постоянной C при достаточно маленьком x имеем <tex>|\ln f(x) = (\alpha_1 - \beta_1)x|<Cx^2</tex>. В частности, если N достаточно велико, то <tex>&forall; n>N</tex>
<br>
+
 
 
<tex>|\ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n}|<C \frac{1}{n^2}</tex>,
 
<tex>|\ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n}|<C \frac{1}{n^2}</tex>,
<br>
+
 
 
<tex>|\ln a_{n+2} - \ln a_{n+1}  - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+1}|<C \frac{1}{(n+1)^2}</tex>,
 
<tex>|\ln a_{n+2} - \ln a_{n+1}  - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+1}|<C \frac{1}{(n+1)^2}</tex>,
<br>
+
 
 
<tex>........</tex>
 
<tex>........</tex>
<br>
+
 
 
<tex>|\ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+m}|<C \frac{1}{(n+m)^2}</tex>.
 
<tex>|\ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+m}|<C \frac{1}{(n+m)^2}</tex>.
<br>
+
 
 
Теперь интересующее нас выражение в левой части неравенства (4.6) можно оценить с помощью системы (4.10) и неравенства треугольника:
 
Теперь интересующее нас выражение в левой части неравенства (4.6) можно оценить с помощью системы (4.10) и неравенства треугольника:
<br>
+
 
 
<tex>| \ln a_{n+m} - \ln a_n - m \ln A - (\alpha_1 - \beta_1)( \ln {n+m} - \ln n)| = | \ln a_{n+m} - \ln a_{n + m - 1} + \ln a_{n + m - 1} - ... + \ln a_{n + 1} - \ln a_n - m \ln A - (\alpha_1 - \beta_1) \sum_{k=0}^{m-1} \frac{1}{n+k} + (\alpha_1 - \beta_1) \sum_{k=0}^{m-1} \frac{1}{n+k} - (\alpha_1 - \beta_1)(\ln {n+m} - \ln n)| \le | \ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n} | + | \ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+1}| + ... + | \ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+m}| + | \alpha_1 - \beta_1 | | \sum_{k=0}^{m-1} \frac{1}{n+k} - \ln {n+m} + \ln n | \le C(\frac{1}{n^2} + \frac{1}{(n+1)^2} + ... + \frac{1}{(n+m-1)^2}) + | \alpha_1 - \beta_1 | | \sum_{k=0}^{m-1} \frac{1}{n+k} - \ln {n+m} + \ln n |</tex>.
 
<tex>| \ln a_{n+m} - \ln a_n - m \ln A - (\alpha_1 - \beta_1)( \ln {n+m} - \ln n)| = | \ln a_{n+m} - \ln a_{n + m - 1} + \ln a_{n + m - 1} - ... + \ln a_{n + 1} - \ln a_n - m \ln A - (\alpha_1 - \beta_1) \sum_{k=0}^{m-1} \frac{1}{n+k} + (\alpha_1 - \beta_1) \sum_{k=0}^{m-1} \frac{1}{n+k} - (\alpha_1 - \beta_1)(\ln {n+m} - \ln n)| \le | \ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n} | + | \ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+1}| + ... + | \ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+m}| + | \alpha_1 - \beta_1 | | \sum_{k=0}^{m-1} \frac{1}{n+k} - \ln {n+m} + \ln n | \le C(\frac{1}{n^2} + \frac{1}{(n+1)^2} + ... + \frac{1}{(n+m-1)^2}) + | \alpha_1 - \beta_1 | | \sum_{k=0}^{m-1} \frac{1}{n+k} - \ln {n+m} + \ln n |</tex>.
<br>
+
 
Поскольку ряд <tex>\sum_{k=1}^{\infty} \frac{1}{k^2}</tex> сходится, первое слагаемое в правой части последнего неравенства при больших n можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции <tex>\frac{1}{[x]}</tex> на отрезке <tex>[n, n+m]</tex>, см рис. (Здесь через <tex>[x]</tex> обозначена целая часть числа <tex>x</tex>, наибольшее целое число, не превосходящее <tex>x</tex>.) Эта площадь больше, чем площадь под графиком функции <tex>y = \frac{1}{x}</tex>, но меньше, чем площадь под графиком функции <tex>y = \frac{1}{x-1}</tex> равна <tex>\ln {n+m-1} - \ln {n - 1}</tex>. Таким образом, интересующая нас разность не превосходит <tex>|(\ln {n+m-1} - \ln {n-1}) - (- \ln {n+m} + \ln n)| = | \ln {1 - \frac{1}{n+m}} - \ln {1 - \frac{1}{n}}| < |\ln {1 - \frac{1}{n}}| < C \frac{1}{n}</tex>.
+
Поскольку ряд <tex>\sum_{k=1}^{\infty} \frac{1}{k^2}</tex> сходится, первое слагаемое в правой части последнего неравенства при больших n можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции <tex>\frac{1}{[x]}</tex> на отрезке <tex>[n, n+m]</tex>, см рис. 4.1 [[Файл:InkedOiGdtVITsP10_LI.png]] (Здесь через <tex>[x]</tex> обозначена целая часть числа <tex>x</tex>, наибольшее целое число, не превосходящее <tex>x</tex>.) Эта площадь больше, чем площадь под графиком функции <tex>y = \frac{1}{x}</tex>, но меньше, чем площадь под графиком функции <tex>y = \frac{1}{x-1}</tex> равна <tex>\ln {n+m-1} - \ln {n - 1}</tex>. Таким образом, интересующая нас разность не превосходит <tex>|(\ln {n+m-1} - \ln {n-1}) - (- \ln {n+m} + \ln n)| = | \ln {1 - \frac{1}{n+m}} - \ln {1 - \frac{1}{n}}| < |\ln {1 - \frac{1}{n}}| < C \frac{1}{n}</tex>.
 
}}
 
}}
  
Строка 70: Строка 70:
  
 
Поэтому <tex>a_n \sim c \cdot a^{-n} \cdot n^{-\alpha-1}</tex>. Например, коэффициенты функции <tex>-(1-4s)^{\frac{1}{2}}</tex> ведут себя как <tex>c \cdot 4^n \cdot n^{-\frac{3}{2}}</tex>, и мы получаем повторный вывод ассимптотики для чисел Каталана.
 
Поэтому <tex>a_n \sim c \cdot a^{-n} \cdot n^{-\alpha-1}</tex>. Например, коэффициенты функции <tex>-(1-4s)^{\frac{1}{2}}</tex> ведут себя как <tex>c \cdot 4^n \cdot n^{-\frac{3}{2}}</tex>, и мы получаем повторный вывод ассимптотики для чисел Каталана.
 +
 +
== См. также ==
 +
 +
* [[Производящая функция Дирихле]]
 +
 +
== Примечания ==
 +
<references/>
 +
 +
== Источники информации ==
 +
* [https://www.mccme.ru/free-books/lando/lando-genfunc.pdf Ландо С.А., Лекции о производящих функциях, 2007 год]
 +
 +
[[Категория: Дискретная математика и алгоритмы]]
 +
[[Категория: Комбинаторика]]

Версия 19:33, 16 мая 2018

Определение:
Гипергеометрической называется последовательность, степени многочленов которой больше нуля.


Вычисление асимптотики

Лемма:
Пусть последовательность [math]a_0,a_1,...[/math] положительных чисел такова, что [math]\frac{a_{n+1}}{a_n}=A\frac{n^k+\alpha_1 n^{k-1}+...+\alpha_k}{n^k+\beta_1 n^{k-1}+...+\beta_k}(4.1)[/math] для всех достаточно больших n, причем [math]\alpha_1 \ne \beta_1[/math]. Тогда [math]a_n[/math] растет как [math]a_n \sim cA^n n^{\alpha_1-\beta_1}(4.2)[/math] для некоторой постоянной [math]c\gt 0[/math].
Доказательство:
[math]\triangleright[/math]

Утверждение леммы эквивалентно тому, что существует предел [math]\lim {\frac{a_n}{A^n n^{\alpha_1-\beta_1}}}[/math].
Прологарифмировав, мы приходим к необходимости доказать существование предела [math]\lim_{n \to \infty} \ln {a_n} - n \ln A - (\alpha_1 - \beta_1)\ln n[/math].

Для доказательства существования предела (4.5) применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна. Фундаментальность последовательности означает, что для любого [math]\epsilon\gt 0[/math] существует такой номер N, что для всех n > N и всех положительных m

[math]|\ln {a_{n+m}} - \ln {a_n} - (n+m)\ln A + n\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|\lt \epsilon[/math],

или

[math]|\ln {a_{n+m}} - \ln {a_n} - m\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|\lt \epsilon[/math].

Перепишем отношение [math]\frac{a_{n+1}}{a_n}[/math] в виде

[math]\frac{a_{n+1}}{a_n}=A\frac{1+\alpha_1 n^{-1}+...+\alpha_k n^{-k}}{1+\beta_1 n^{-1}+...+\beta_k n^{-k}}=Af(\frac{1}{n})[/math],

где

[math]f(x)=\frac{1+\alpha_1 x+...+\alpha_k x^k}{1+\beta_1 x+...+\beta_k x^k}[/math]

Прологарифмировав (4.7), получаем

[math]\ln a_{n+1} - \ln a_n = \ln A + \ln f(\frac{1}{n})[/math].

Посмотрим на функцию [math]\ln f(x)[/math]. Выпишем начальные члены разложения функции f, определенной формулой (4.8), в ряд в точке 0:

[math]f(x)=1+(\alpha_1-\beta_1)x+\gamma x^2+...[/math] для некоторой константы [math]\gamma[/math]. Это разложение - самый существенный элемент доказательства. Именно коэффициент [math]\alpha_1 - \beta_1[/math](отличный от нуля по предположению теоремы) при линейном члене указывает на присутствие сомножителя [math]n^{\alpha_1-\beta_1}[/math] в асимптотике. Для логарифма функции f имеем [math]\ln f(x)=(\alpha_1-\beta_1)x+\tilde{\gamma}x^2+...[/math]. Поэтому для некоторой постоянной C при достаточно маленьком x имеем [math]|\ln f(x) = (\alpha_1 - \beta_1)x|\lt Cx^2[/math]. В частности, если N достаточно велико, то [math]∀ n\gt N[/math]

[math]|\ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n}|\lt C \frac{1}{n^2}[/math],

[math]|\ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+1}|\lt C \frac{1}{(n+1)^2}[/math],

[math]........[/math]

[math]|\ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+m}|\lt C \frac{1}{(n+m)^2}[/math].

Теперь интересующее нас выражение в левой части неравенства (4.6) можно оценить с помощью системы (4.10) и неравенства треугольника:

[math]| \ln a_{n+m} - \ln a_n - m \ln A - (\alpha_1 - \beta_1)( \ln {n+m} - \ln n)| = | \ln a_{n+m} - \ln a_{n + m - 1} + \ln a_{n + m - 1} - ... + \ln a_{n + 1} - \ln a_n - m \ln A - (\alpha_1 - \beta_1) \sum_{k=0}^{m-1} \frac{1}{n+k} + (\alpha_1 - \beta_1) \sum_{k=0}^{m-1} \frac{1}{n+k} - (\alpha_1 - \beta_1)(\ln {n+m} - \ln n)| \le | \ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n} | + | \ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+1}| + ... + | \ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+m}| + | \alpha_1 - \beta_1 | | \sum_{k=0}^{m-1} \frac{1}{n+k} - \ln {n+m} + \ln n | \le C(\frac{1}{n^2} + \frac{1}{(n+1)^2} + ... + \frac{1}{(n+m-1)^2}) + | \alpha_1 - \beta_1 | | \sum_{k=0}^{m-1} \frac{1}{n+k} - \ln {n+m} + \ln n |[/math].

Поскольку ряд [math]\sum_{k=1}^{\infty} \frac{1}{k^2}[/math] сходится, первое слагаемое в правой части последнего неравенства при больших n можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции [math]\frac{1}{[x]}[/math] на отрезке [math][n, n+m][/math], см рис. 4.1 Файл:InkedOiGdtVITsP10 LI.png (Здесь через [math][x][/math] обозначена целая часть числа [math]x[/math], наибольшее целое число, не превосходящее [math]x[/math].) Эта площадь больше, чем площадь под графиком функции [math]y = \frac{1}{x}[/math], но меньше, чем площадь под графиком функции [math]y = \frac{1}{x-1}[/math] равна [math]\ln {n+m-1} - \ln {n - 1}[/math]. Таким образом, интересующая нас разность не превосходит [math]|(\ln {n+m-1} - \ln {n-1}) - (- \ln {n+m} + \ln n)| = | \ln {1 - \frac{1}{n+m}} - \ln {1 - \frac{1}{n}}| \lt |\ln {1 - \frac{1}{n}}| \lt C \frac{1}{n}[/math].
[math]\triangleleft[/math]

Замечание: Предположения леммы не позволяют определить величину константы c. Действительно, умножив последовательность an на произвольную постоянную d > 0, мы получим новую последовательность с тем же отношением последовательных членов, константа c для которой увеличивается в d раз

Примеры

Пример. Для чисел Каталана имеем

[math]\frac{c_{n+1}}{c_n}=\frac{4n+2}{n+2}=4\frac{n+\frac{1}{2}}{n+2}[/math]

Поэтому [math]c_n \sim c \cdot 4^n \cdot n^{-\frac{3}{2}}[/math] для некоторой постоянной c.

Пример. Найдем асимптотику коэффициентов для функции [math](a-s)^{\alpha}[/math], где [math]\alpha[/math] вещественно. В ряде случаев эта асимптотика нам уже известна, например, при [math]\alpha=−1[/math]. Согласно определению функции [math](1-s)^{\alpha}[/math] имеем

[math](a-s)^{\alpha}=a^{\alpha}(1-\frac{s}{a})^{\alpha}=a^{\alpha}(1 - \frac{\alpha}{1!} \frac{s}{a} + \frac{\alpha(\alpha-1)}{2!}{(\frac{s}{a})^2} - \frac{\alpha(\alpha-1)(\alpha-2)}{3!}(\frac{s}{a})^3+...)[/math].

Если [math]\alpha[/math] — целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае начиная с некоторого номера все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться предыдущей леммой при [math]a_n=(-1)^n \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!{\alpha}^n}[/math]

[math]\frac{a_{n+1}}{a_n}=\frac{1}{a} \frac{n-\alpha}{n+1}[/math]

Поэтому [math]a_n \sim c \cdot a^{-n} \cdot n^{-\alpha-1}[/math]. Например, коэффициенты функции [math]-(1-4s)^{\frac{1}{2}}[/math] ведут себя как [math]c \cdot 4^n \cdot n^{-\frac{3}{2}}[/math], и мы получаем повторный вывод ассимптотики для чисел Каталана.

См. также

Примечания


Источники информации