Асимптотика гипергеометрических последовательностей — различия между версиями
Iksiygrik (обсуждение | вклад) м (Iksiygrik переименовал страницу Викиконспекты:Асимптотика гипергеометрических последовательностей в [[Асимптотика гипергеометрических…) |
Iksiygrik (обсуждение | вклад) м |
||
Строка 11: | Строка 11: | ||
|proof= | |proof= | ||
Утверждение леммы эквивалентно тому, что существует предел <tex>\lim {\frac{a_n}{A^n n^{\alpha_1-\beta_1}}}</tex>. <br> Прологарифмировав, мы приходим к необходимости доказать существование предела <tex>\lim_{n \to \infty} \ln {a_n} - n \ln A - (\alpha_1 - \beta_1)\ln n</tex>. | Утверждение леммы эквивалентно тому, что существует предел <tex>\lim {\frac{a_n}{A^n n^{\alpha_1-\beta_1}}}</tex>. <br> Прологарифмировав, мы приходим к необходимости доказать существование предела <tex>\lim_{n \to \infty} \ln {a_n} - n \ln A - (\alpha_1 - \beta_1)\ln n</tex>. | ||
− | + | ||
Для доказательства существования предела (4.5) применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна. Фундаментальность последовательности означает, что для любого <tex>\epsilon>0</tex> существует такой номер N, что для всех n > N и всех положительных m | Для доказательства существования предела (4.5) применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна. Фундаментальность последовательности означает, что для любого <tex>\epsilon>0</tex> существует такой номер N, что для всех n > N и всех положительных m | ||
− | + | ||
<tex>|\ln {a_{n+m}} - \ln {a_n} - (n+m)\ln A + n\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|<\epsilon</tex>, | <tex>|\ln {a_{n+m}} - \ln {a_n} - (n+m)\ln A + n\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|<\epsilon</tex>, | ||
− | + | ||
или | или | ||
− | + | ||
<tex>|\ln {a_{n+m}} - \ln {a_n} - m\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|<\epsilon</tex>. | <tex>|\ln {a_{n+m}} - \ln {a_n} - m\ln A - (\alpha_1 - \beta_1)\ln(n+m)+(\alpha_1-\beta_1)\ln n|<\epsilon</tex>. | ||
− | + | ||
Перепишем отношение <tex>\frac{a_{n+1}}{a_n}</tex> в виде | Перепишем отношение <tex>\frac{a_{n+1}}{a_n}</tex> в виде | ||
− | + | ||
<tex>\frac{a_{n+1}}{a_n}=A\frac{1+\alpha_1 n^{-1}+...+\alpha_k n^{-k}}{1+\beta_1 n^{-1}+...+\beta_k n^{-k}}=Af(\frac{1}{n})</tex>, | <tex>\frac{a_{n+1}}{a_n}=A\frac{1+\alpha_1 n^{-1}+...+\alpha_k n^{-k}}{1+\beta_1 n^{-1}+...+\beta_k n^{-k}}=Af(\frac{1}{n})</tex>, | ||
− | + | ||
где | где | ||
− | + | ||
<tex>f(x)=\frac{1+\alpha_1 x+...+\alpha_k x^k}{1+\beta_1 x+...+\beta_k x^k}</tex> | <tex>f(x)=\frac{1+\alpha_1 x+...+\alpha_k x^k}{1+\beta_1 x+...+\beta_k x^k}</tex> | ||
− | + | ||
Прологарифмировав (4.7), получаем | Прологарифмировав (4.7), получаем | ||
− | + | ||
<tex>\ln a_{n+1} - \ln a_n = \ln A + \ln f(\frac{1}{n})</tex>. | <tex>\ln a_{n+1} - \ln a_n = \ln A + \ln f(\frac{1}{n})</tex>. | ||
− | + | ||
Посмотрим на функцию <tex>\ln f(x)</tex>. Выпишем начальные члены разложения функции f, определенной формулой (4.8), в ряд в точке 0: | Посмотрим на функцию <tex>\ln f(x)</tex>. Выпишем начальные члены разложения функции f, определенной формулой (4.8), в ряд в точке 0: | ||
− | + | ||
<tex>f(x)=1+(\alpha_1-\beta_1)x+\gamma x^2+...</tex> для некоторой константы <tex>\gamma</tex>. Это разложение - самый существенный элемент доказательства. Именно коэффициент <tex>\alpha_1 - \beta_1</tex>(отличный от нуля по предположению теоремы) при линейном члене указывает на присутствие сомножителя <tex>n^{\alpha_1-\beta_1}</tex> в асимптотике. Для логарифма функции f имеем <tex>\ln f(x)=(\alpha_1-\beta_1)x+\tilde{\gamma}x^2+...</tex>. Поэтому для некоторой постоянной C при достаточно маленьком x имеем <tex>|\ln f(x) = (\alpha_1 - \beta_1)x|<Cx^2</tex>. В частности, если N достаточно велико, то <tex>∀ n>N</tex> | <tex>f(x)=1+(\alpha_1-\beta_1)x+\gamma x^2+...</tex> для некоторой константы <tex>\gamma</tex>. Это разложение - самый существенный элемент доказательства. Именно коэффициент <tex>\alpha_1 - \beta_1</tex>(отличный от нуля по предположению теоремы) при линейном члене указывает на присутствие сомножителя <tex>n^{\alpha_1-\beta_1}</tex> в асимптотике. Для логарифма функции f имеем <tex>\ln f(x)=(\alpha_1-\beta_1)x+\tilde{\gamma}x^2+...</tex>. Поэтому для некоторой постоянной C при достаточно маленьком x имеем <tex>|\ln f(x) = (\alpha_1 - \beta_1)x|<Cx^2</tex>. В частности, если N достаточно велико, то <tex>∀ n>N</tex> | ||
− | + | ||
<tex>|\ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n}|<C \frac{1}{n^2}</tex>, | <tex>|\ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n}|<C \frac{1}{n^2}</tex>, | ||
− | + | ||
<tex>|\ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+1}|<C \frac{1}{(n+1)^2}</tex>, | <tex>|\ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+1}|<C \frac{1}{(n+1)^2}</tex>, | ||
− | + | ||
<tex>........</tex> | <tex>........</tex> | ||
− | + | ||
<tex>|\ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+m}|<C \frac{1}{(n+m)^2}</tex>. | <tex>|\ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+m}|<C \frac{1}{(n+m)^2}</tex>. | ||
− | + | ||
Теперь интересующее нас выражение в левой части неравенства (4.6) можно оценить с помощью системы (4.10) и неравенства треугольника: | Теперь интересующее нас выражение в левой части неравенства (4.6) можно оценить с помощью системы (4.10) и неравенства треугольника: | ||
− | + | ||
<tex>| \ln a_{n+m} - \ln a_n - m \ln A - (\alpha_1 - \beta_1)( \ln {n+m} - \ln n)| = | \ln a_{n+m} - \ln a_{n + m - 1} + \ln a_{n + m - 1} - ... + \ln a_{n + 1} - \ln a_n - m \ln A - (\alpha_1 - \beta_1) \sum_{k=0}^{m-1} \frac{1}{n+k} + (\alpha_1 - \beta_1) \sum_{k=0}^{m-1} \frac{1}{n+k} - (\alpha_1 - \beta_1)(\ln {n+m} - \ln n)| \le | \ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n} | + | \ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+1}| + ... + | \ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+m}| + | \alpha_1 - \beta_1 | | \sum_{k=0}^{m-1} \frac{1}{n+k} - \ln {n+m} + \ln n | \le C(\frac{1}{n^2} + \frac{1}{(n+1)^2} + ... + \frac{1}{(n+m-1)^2}) + | \alpha_1 - \beta_1 | | \sum_{k=0}^{m-1} \frac{1}{n+k} - \ln {n+m} + \ln n |</tex>. | <tex>| \ln a_{n+m} - \ln a_n - m \ln A - (\alpha_1 - \beta_1)( \ln {n+m} - \ln n)| = | \ln a_{n+m} - \ln a_{n + m - 1} + \ln a_{n + m - 1} - ... + \ln a_{n + 1} - \ln a_n - m \ln A - (\alpha_1 - \beta_1) \sum_{k=0}^{m-1} \frac{1}{n+k} + (\alpha_1 - \beta_1) \sum_{k=0}^{m-1} \frac{1}{n+k} - (\alpha_1 - \beta_1)(\ln {n+m} - \ln n)| \le | \ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \frac{1}{n} | + | \ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+1}| + ... + | \ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \frac{1}{n+m}| + | \alpha_1 - \beta_1 | | \sum_{k=0}^{m-1} \frac{1}{n+k} - \ln {n+m} + \ln n | \le C(\frac{1}{n^2} + \frac{1}{(n+1)^2} + ... + \frac{1}{(n+m-1)^2}) + | \alpha_1 - \beta_1 | | \sum_{k=0}^{m-1} \frac{1}{n+k} - \ln {n+m} + \ln n |</tex>. | ||
− | + | ||
− | Поскольку ряд <tex>\sum_{k=1}^{\infty} \frac{1}{k^2}</tex> сходится, первое слагаемое в правой части последнего неравенства при больших n можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции <tex>\frac{1}{[x]}</tex> на отрезке <tex>[n, n+m]</tex>, см рис. (Здесь через <tex>[x]</tex> обозначена целая часть числа <tex>x</tex>, наибольшее целое число, не превосходящее <tex>x</tex>.) Эта площадь больше, чем площадь под графиком функции <tex>y = \frac{1}{x}</tex>, но меньше, чем площадь под графиком функции <tex>y = \frac{1}{x-1}</tex> равна <tex>\ln {n+m-1} - \ln {n - 1}</tex>. Таким образом, интересующая нас разность не превосходит <tex>|(\ln {n+m-1} - \ln {n-1}) - (- \ln {n+m} + \ln n)| = | \ln {1 - \frac{1}{n+m}} - \ln {1 - \frac{1}{n}}| < |\ln {1 - \frac{1}{n}}| < C \frac{1}{n}</tex>. | + | Поскольку ряд <tex>\sum_{k=1}^{\infty} \frac{1}{k^2}</tex> сходится, первое слагаемое в правой части последнего неравенства при больших n можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции <tex>\frac{1}{[x]}</tex> на отрезке <tex>[n, n+m]</tex>, см рис. 4.1 [[Файл:InkedOiGdtVITsP10_LI.png]] (Здесь через <tex>[x]</tex> обозначена целая часть числа <tex>x</tex>, наибольшее целое число, не превосходящее <tex>x</tex>.) Эта площадь больше, чем площадь под графиком функции <tex>y = \frac{1}{x}</tex>, но меньше, чем площадь под графиком функции <tex>y = \frac{1}{x-1}</tex> равна <tex>\ln {n+m-1} - \ln {n - 1}</tex>. Таким образом, интересующая нас разность не превосходит <tex>|(\ln {n+m-1} - \ln {n-1}) - (- \ln {n+m} + \ln n)| = | \ln {1 - \frac{1}{n+m}} - \ln {1 - \frac{1}{n}}| < |\ln {1 - \frac{1}{n}}| < C \frac{1}{n}</tex>. |
}} | }} | ||
Строка 70: | Строка 70: | ||
Поэтому <tex>a_n \sim c \cdot a^{-n} \cdot n^{-\alpha-1}</tex>. Например, коэффициенты функции <tex>-(1-4s)^{\frac{1}{2}}</tex> ведут себя как <tex>c \cdot 4^n \cdot n^{-\frac{3}{2}}</tex>, и мы получаем повторный вывод ассимптотики для чисел Каталана. | Поэтому <tex>a_n \sim c \cdot a^{-n} \cdot n^{-\alpha-1}</tex>. Например, коэффициенты функции <tex>-(1-4s)^{\frac{1}{2}}</tex> ведут себя как <tex>c \cdot 4^n \cdot n^{-\frac{3}{2}}</tex>, и мы получаем повторный вывод ассимптотики для чисел Каталана. | ||
+ | |||
+ | == См. также == | ||
+ | |||
+ | * [[Производящая функция Дирихле]] | ||
+ | |||
+ | == Примечания == | ||
+ | <references/> | ||
+ | |||
+ | == Источники информации == | ||
+ | * [https://www.mccme.ru/free-books/lando/lando-genfunc.pdf Ландо С.А., Лекции о производящих функциях, 2007 год] | ||
+ | |||
+ | [[Категория: Дискретная математика и алгоритмы]] | ||
+ | [[Категория: Комбинаторика]] |
Версия 19:33, 16 мая 2018
Определение: |
Гипергеометрической называется последовательность, степени многочленов которой больше нуля. |
Вычисление асимптотики
Лемма: |
Пусть последовательность положительных чисел такова, что для всех достаточно больших n, причем . Тогда растет как для некоторой постоянной . |
Доказательство: |
Утверждение леммы эквивалентно тому, что существует предел Для доказательства существования предела (4.5) применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна. Фундаментальность последовательности означает, что для любого существует такой номер N, что для всех n > N и всех положительных m, или . Перепишем отношение в виде, где
Прологарифмировав (4.7), получаем . Посмотрим на функцию . Выпишем начальные члены разложения функции f, определенной формулой (4.8), в ряд в точке 0:для некоторой константы . Это разложение - самый существенный элемент доказательства. Именно коэффициент (отличный от нуля по предположению теоремы) при линейном члене указывает на присутствие сомножителя в асимптотике. Для логарифма функции f имеем . Поэтому для некоторой постоянной C при достаточно маленьком x имеем . В частности, если N достаточно велико, то , ,
. Теперь интересующее нас выражение в левой части неравенства (4.6) можно оценить с помощью системы (4.10) и неравенства треугольника: Поскольку ряд . сходится, первое слагаемое в правой части последнего неравенства при больших n можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции на отрезке , см рис. 4.1 Файл:InkedOiGdtVITsP10 LI.png (Здесь через обозначена целая часть числа , наибольшее целое число, не превосходящее .) Эта площадь больше, чем площадь под графиком функции , но меньше, чем площадь под графиком функции равна . Таким образом, интересующая нас разность не превосходит . |
Замечание: Предположения леммы не позволяют определить величину константы c. Действительно, умножив последовательность an на произвольную постоянную d > 0, мы получим новую последовательность с тем же отношением последовательных членов, константа c для которой увеличивается в d раз
Примеры
Пример. Для чисел Каталана имеем
Поэтому
для некоторой постоянной c.Пример. Найдем асимптотику коэффициентов для функции
, где вещественно. В ряде случаев эта асимптотика нам уже известна, например, при . Согласно определению функции имеем.
Если
— целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае начиная с некоторого номера все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться предыдущей леммой при
Поэтому
. Например, коэффициенты функции ведут себя как , и мы получаем повторный вывод ассимптотики для чисел Каталана.См. также
Примечания