Асимптотика гипергеометрических последовательностей — различия между версиями
Iksiygrik (обсуждение | вклад) м |
Iksiygrik (обсуждение | вклад) м |
||
Строка 77: | Строка 77: | ||
<tex>\cfrac{c_{n+1}}{c_n}=\cfrac{4 \cdot n + 2}{n+2}=4 \cdot \cfrac{ n + \cfrac{1}{2}}{n+2}</tex> | <tex>\cfrac{c_{n+1}}{c_n}=\cfrac{4 \cdot n + 2}{n+2}=4 \cdot \cfrac{ n + \cfrac{1}{2}}{n+2}</tex> | ||
− | Поэтому <tex>c_n \sim c \cdot 4^n \cdot n^{-\ | + | Поэтому <tex>c_n \sim c \cdot 4^n \cdot n^{-\dfrac{3}{2}}</tex> для некоторой постоянной <tex>c</tex>. |
'''Пример.''' Найдем асимптотику коэффициентов для функции <tex>(a-s)^{\alpha}</tex>, где <tex>\alpha</tex> вещественно. В ряде случаев эта асимптотика нам | '''Пример.''' Найдем асимптотику коэффициентов для функции <tex>(a-s)^{\alpha}</tex>, где <tex>\alpha</tex> вещественно. В ряде случаев эта асимптотика нам | ||
Строка 88: | Строка 88: | ||
<tex>\cfrac{a_{n+1}}{a_n}=\cfrac{1}{a} \cdot \cfrac{n-\alpha}{n+1}</tex> | <tex>\cfrac{a_{n+1}}{a_n}=\cfrac{1}{a} \cdot \cfrac{n-\alpha}{n+1}</tex> | ||
− | Поэтому <tex>a_n \sim c \cdot a^{-n} \cdot n^{-\alpha-1}</tex>. Например, коэффициенты функции <tex>-(1-4 \cdot s)^{\ | + | Поэтому <tex>a_n \sim c \cdot a^{-n} \cdot n^{-\alpha-1}</tex>. Например, коэффициенты функции <tex>-(1-4 \cdot s)^{\dfrac{1}{2}}</tex> ведут себя как <tex>c \cdot 4^n \cdot n^{-\dfrac{3}{2}}</tex>, и мы получаем повторный вывод ассимптотики для [[Числа Каталана|чисел Каталана]]. |
== См. также == | == См. также == |
Версия 00:21, 28 мая 2018
Определение: |
Последовательность, в которой отношение двух соседних членов равно отношению многочленов степени | , где , называется гипергеометрической (англ. hypergeometric sequence).
Вычисление асимптотики
Лемма: |
Пусть последовательность положительных чисел такова, что для всех достаточно больших , причем . Тогда растет как для некоторой постоянной . |
Доказательство: |
Утверждение леммы эквивалентно тому, что существует предел Для доказательства существования предела применим критерий Коши[1], т. е. будем доказывать, что рассматриваемая последовательность фундаментальна[2]. Перепишем отношение в виде, где
Прологарифмировав отношение , получаем. Посмотрим на функцию . Выпишем начальные члены разложения функции в ряд в точке :для некоторой константы . Это разложение - самый существенный элемент доказательства. Именно коэффициент (отличный от нуля по предположению леммы) при линейном члене указывает на присутствие сомножителя в асимптотике. Для логарифма функции имеем
Поэтому для некоторой постоянной при достаточно маленьком имеем . В частности, если достаточно велико, то, ,
. Теперь интересующее нас выражение в левой части неравенства [3]: можно оценить с помощью системы и неравенства треугольника
. Поскольку ряд сходится, первое слагаемое в правой части последнего неравенства при больших можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции на отрезке ,
. |
Замечание: Предположения леммы не позволяют определить величину константы
. Действительно, умножив последовательность на произвольную постоянную , мы получим новую последовательность с тем же отношением последовательных членов, константа для которой увеличивается в разПримеры
Пример. Для чисел Каталана имеем
Поэтому
для некоторой постоянной .Пример. Найдем асимптотику коэффициентов для функции
, где вещественно. В ряде случаев эта асимптотика нам уже известна, например, при . Согласно определению функции имеем.
Если
— целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае начиная с некоторого номера все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться леммой при
Поэтому чисел Каталана.
. Например, коэффициенты функции ведут себя как , и мы получаем повторный вывод ассимптотики для