Алгоритм построения базы в объединении матроидов — различия между версиями
(→Алгоритм) |
(→Алгоритм) |
||
Строка 20: | Строка 20: | ||
Все наши кандидаты находятся в <tex>S \setminus I</tex> . Если мы найдем путь из <tex>F</tex> в <tex>S \setminus I</tex>, то элемент <tex>s</tex>, которым путь закончился, можно будет добавить в <tex>I</tex>. | Все наши кандидаты находятся в <tex>S \setminus I</tex> . Если мы найдем путь из <tex>F</tex> в <tex>S \setminus I</tex>, то элемент <tex>s</tex>, которым путь закончился, можно будет добавить в <tex>I</tex>. | ||
То есть шаг жадного алгоритма заключается в создании нового <tex>D</tex> и поиске такого пути. | То есть шаг жадного алгоритма заключается в создании нового <tex>D</tex> и поиске такого пути. | ||
− | Это подразумевает, что максимальное независимое множество в <tex> \mathcal{I} = \mathcal{I}_1 \cup \ldots \cup \mathcal{I}_k</tex> мы можем найти за полиномиальное время (жадно наращивать независимое множество в <tex>M = M_1 \cup \ldots \cup M_k</tex>) | + | |
+ | Это подразумевает, что максимальное независимое множество в <tex> \mathcal{I} = \mathcal{I}_1 \cup \ldots \cup \mathcal{I}_k</tex> мы можем найти за полиномиальное время (жадно наращивать независимое множество в <tex>M = M_1 \cup \ldots \cup M_k</tex>). Cunningham разработал алгоритм, которым за <tex>O((n^(3/2) + k)mQ + n^(1/2)km)</tex> можно найти максимальное независимое множество в <tex> \mathcal{I} = \mathcal{I}_1 \cup \ldots \cup \mathcal{I}_k</tex>, где <tex>n</tex> максимальный размер множества в <tex> \mathcal{I} = \mathcal{I}_1 \cup \ldots \cup \mathcal{I}_k</tex>, <tex>m</tex> размер подмножества и <tex>Q</tex> время, необходимое, чтобы определить принадлежит ли множество <tex> \mathcal{I}_j</tex> для каждого <tex>j</tex> | ||
=== Псевдокод === | === Псевдокод === |
Версия 12:17, 24 декабря 2018
Задача: |
Даны матроиды . Необходимо найти максимальное по мощности независимое множество в объединении . |
Определение: |
Объединение матроидов (англ. matroid union) | , где
Содержание
Алгоритм
Эта задача сводится к пересечению матроидов, однако есть другой способ её решить. Пусть , для с , если . Определим граф замен: для каждого построим двудольный ориентированный граф так, что в левой доле находятся вершины из , а в правой — вершины из . Построим ориентированные ребра из в , при условии, что .
Объединим все
в один граф , который будет суперпозицией ребер из этих графов. Пусть для каждого — множество элементов с . Определим , и .Нам известно, что объединение матроидов — матроид. При поиске базы матроида используется жадный алгоритм. На каждом шаге мы выбираем элемент не из текущего множества в новом графе замен следующая теорема отвечает на вопрос, как представить это в графе). Здесь мы обозначим текущее множество как . Тогда нужно найти такой элемент , что — снова независимо. Все наши кандидаты находятся в . Если мы найдем путь из в , то элемент , которым путь закончился, можно будет добавить в . То есть шаг жадного алгоритма заключается в создании нового и поиске такого пути.
(Это подразумевает, что максимальное независимое множество в
мы можем найти за полиномиальное время (жадно наращивать независимое множество в ). Cunningham разработал алгоритм, которым за можно найти максимальное независимое множество в , где максимальный размер множества в , размер подмножества и время, необходимое, чтобы определить принадлежит ли множество для каждогоПсевдокод
граф замен if= for to построить
Теорема: |
Для любого имеем существует ориентированный путь из в по ребрам графа . |
Доказательство: |
Пусть существует путь из в и — самый короткий такой путь. Запишем его вершины как { }. , так что не умаляя общности можно сказать, что . Для каждого определим множество вершин { }, где пробегает от до . Положим, что , для всех положим . Ясно, что . Для того, чтобы показать независимость в объединении матроидов нужно показать, что для всех . Заметим, что так как мы выбирали путь таким, что он будет наименьшим, для каждого существует единственное паросочетание между элементами, которые мы добавляли и удаляли, чтобы сконструировать . Так как паросочетание единственно, . Аналогично , значит . Следовательно независимо в объединении матроидов.
Пусть нет пути из в по ребрам . Тогда пусть существует множество , состоящее из вершин , из которого мы можем достичь : по допущению . Утверждается, что для всех (что означает, что — максимальное подмножество , независимое в ).Предположим, что это не так. ранга объединения матроидов имеем : , это возможно только если . Значит существует такой , для которого . Но (по предположению вначале доказательства), значит . Из этого следует, что содержит единственный цикл. Значит существует , такой что . Получается, что — ребро в и оно содержит этот , что противоречит тому как был выбран . Следовательно для всех нам известно : . У нас есть и . Из определния функции
и значит — противоречие. |
См. также
Источники информации
Michel X. Goemans. Advanced Combinatorial Optimization. Lecture 13