Метод опорных векторов (SVM) — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
(Правки по оформлению)
Строка 1: Строка 1:
{{в разработке}}
 
 
 
 
'''Метод опорных векторов''' (англ. ''support vector machine'', ''SVM'') — один из наиболее популярных методов обучения, который применяется для решения задач классификации и регрессии. Основная идея метода заключается в построении гиперплоскости, разделяющей объекты выборки наиболее оптимальным способом. Алгоритм работает в предположении, что чем больше расстояние (зазор) между разделяющей гиперплоскостью и объектами разделяемых классов, тем меньше будет средняя ошибка классификатора.
 
'''Метод опорных векторов''' (англ. ''support vector machine'', ''SVM'') — один из наиболее популярных методов обучения, который применяется для решения задач классификации и регрессии. Основная идея метода заключается в построении гиперплоскости, разделяющей объекты выборки наиболее оптимальным способом. Алгоритм работает в предположении, что чем больше расстояние (зазор) между разделяющей гиперплоскостью и объектами разделяемых классов, тем меньше будет средняя ошибка классификатора.
  
Строка 170: Строка 167:
 
Это также задача квадратичного программирования. Решение задачи лежит в пересечении $\ell$-мерного куба с ребром $C$ и гиперплоскости $\langle \lambda, y \rangle = 0$, что является выпуклым многогранником размерности $\ell-1$. В этом многограннике нужно найти минимум выпуклого квадратичного функционала. Следовательно, данная задача имеет единственное решение.
 
Это также задача квадратичного программирования. Решение задачи лежит в пересечении $\ell$-мерного куба с ребром $C$ и гиперплоскости $\langle \lambda, y \rangle = 0$, что является выпуклым многогранником размерности $\ell-1$. В этом многограннике нужно найти минимум выпуклого квадратичного функционала. Следовательно, данная задача имеет единственное решение.
  
Существуют различные методы поиска решения: можно воспользоваться универсальным солвером задачи квадратичного программирования ([[CPLEX]], [[Gurobi]]), либо алгоритмом, учитывающим специфические особенности SVM ([[SMO]], [[INCAS]]).
+
Существуют различные методы поиска решения: можно воспользоваться универсальным солвером задачи квадратичного программирования ([https://www.ibm.com/analytics/cplex-optimizer CPLEX], [http://www.gurobi.com/ Gurobi]), либо алгоритмом, учитывающим специфические особенности SVM ([https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/ SMO], [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.9956 INCAS]).
  
 
После того, как мы получили вектор коэффициентов $\vec{\lambda}$, можем выразить решение прямой задачи через решение двойственной:
 
После того, как мы получили вектор коэффициентов $\vec{\lambda}$, можем выразить решение прямой задачи через решение двойственной:
Строка 176: Строка 173:
 
$\begin{cases}
 
$\begin{cases}
 
\vec{w} = \sum\limits_{i=1}^\ell \lambda_i y_i \vec{x}_i \\
 
\vec{w} = \sum\limits_{i=1}^\ell \lambda_i y_i \vec{x}_i \\
b = \langle \vec{w}, \vec{x}_i \rangle - y_i, \quad \text{для любого}\; i: \lambda_i > 0, M_i = 1
+
b = \langle \vec{w}, \vec{x}_i \rangle - y_i, \quad \forall i: \lambda_i > 0, M_i = 1
 
\end{cases}$
 
\end{cases}$
  
Строка 189: Строка 186:
 
=== Нелинейное обобщение, kernel trick ===
 
=== Нелинейное обобщение, kernel trick ===
  
Существует ещё один подход к решению проблемы линейной разделимости, известный как трюк с ядом (kernel trick). Если выборка объектов с признаковым описанием из $X = \mathbb{R}^n$ не является линейно разделимой, мы можем предположить, что существует некоторое пространство $H$, вероятно, большей размерности, при переходе в которое выборка станет линейно разделимой. Пространство $H$ здесь называют спрямляющим, а функцию перехода $\psi : X \to H$ — спрямляющим отображением. Построение SVM в таком случае происходит так же, как и раньше, но в качестве векторов признаковых описаний используются векторы $\psi(\vec{x})$, а не $\vec{x}$. Соответственно, скалярное произведение $\langle \vec{x}_1, \vec{x}_2 \rangle$ в пространстве $X$ везде заменяется скалярным произведением $\langle \psi(\vec{x}_1), \psi(\vec{x}_2) \rangle$ в пространстве $H$. Отсюда следует, что пространство $H$ должно быть гильбертовым, так как в нём должно быть определено скалярное произведение.
+
Существует ещё один подход к решению проблемы линейной разделимости, известный как трюк с ядром (kernel trick). Если выборка объектов с признаковым описанием из $X = \mathbb{R}^n$ не является линейно разделимой, мы можем предположить, что существует некоторое пространство $H$, вероятно, большей размерности, при переходе в которое выборка станет линейно разделимой. Пространство $H$ здесь называют спрямляющим, а функцию перехода $\psi : X \to H$ — спрямляющим отображением. Построение SVM в таком случае происходит так же, как и раньше, но в качестве векторов признаковых описаний используются векторы $\psi(\vec{x})$, а не $\vec{x}$. Соответственно, скалярное произведение $\langle \vec{x}_1, \vec{x}_2 \rangle$ в пространстве $X$ везде заменяется скалярным произведением $\langle \psi(\vec{x}_1), \psi(\vec{x}_2) \rangle$ в пространстве $H$. Отсюда следует, что пространство $H$ должно быть гильбертовым, так как в нём должно быть определено скалярное произведение.
 
 
Обратим внимание на то, что постановка задачи и алгоритм классификации не используют в явном виде признаковое описание и оперируют только скалярными произведениями признаков объектов. Это даёт возможность заменить скалярное произведение в пространстве $X$ на скалярное произведение в $H$:
 
  
{{Определение
+
Обратим внимание на то, что постановка задачи и алгоритм классификации не используют в явном виде признаковое описание и оперируют только скалярными произведениями признаков объектов. Это даёт возможность заменить скалярное произведение в пространстве $X$ на [[Ядро|ядро]] — функцию, являющуюся скалярным произведением в некотором $H$. При этом можно вообще не строить спрямляющее пространство в явном виде, и вместо подбора $\psi$ подбирать непосредственно ядро.  
|definition=
 
'''Ядро''' (англ. ''kernel'') — функция $K: X \times X \to \mathbb{R}$, которая является скалярным произведением в некотором спрямляющем пространстве: $K(\vec{x}_1, \vec{x}_2) = \langle \psi(\vec{x}_1), \psi(\vec{x}_2) \rangle$ при некотором $\psi : X \to H$, где $H$ — пространство со скалярным произведением.
 
}}
 
 
 
Более того, можно вообще не строить спрямляющее пространство $H$ в явном виде, и вместо подбора $\psi$ подбирать непосредственно ядро.  
 
  
 
Постановка задачи с применением ядер приобретает вид:
 
Постановка задачи с применением ядер приобретает вид:
Строка 209: Строка 199:
  
 
$a(x) = sign \left(\sum\limits_{i=1}^\ell \lambda_i y_i \color{brown}{K(\vec{x}_i, \vec{x})} - b\right)$
 
$a(x) = sign \left(\sum\limits_{i=1}^\ell \lambda_i y_i \color{brown}{K(\vec{x}_i, \vec{x})} - b\right)$
 
Теперь осталось рассмотреть вопрос выбора ядра для задачи. Теорема Мерсера определяет условия, при которых функция может являться ядром:
 
 
{{Теорема
 
|id=kernel
 
|author=Мерсер
 
|statement=
 
Функция $K(\vec{x}_1, \vec{x}_2)$ является ядром тогда и только тогда, когда выполнены условия: <br><br>
 
$\begin{cases}K(\vec{x}_1, \vec{x}_2) = K(\vec{x}_2, \vec{x}_1) & \text{(симметричность)} \\[1ex] \forall g: X \to \mathbb{R} \quad \int\limits_X \int\limits_X K(\vec{x}_1, \vec{x}_2) g(\vec{x}_1) g(\vec{x}_2) d \vec{x}_1 d \vec{x}_2 \geq 0 & \text{(неотрицательная определенность)}\end{cases}$
 
}}
 
 
Проверка неотрицательной определённости является довольно трудоёмкой, поэтому на практике теорема явно не используется. Проблема выбора лучшего ядра на сегодняшний день остаётся открытой, лучшие из известных на данный момент решений основываются на генетических алгоритмах<ref>[https://www.researchgate.net/publication/221080223_An_Evolutionary_Approach_to_Automatic_Kernel_Construction T.Howley, M.G.Madden — An Evolutionary Approach to Automatic Kernel Construction]</ref>). Обычно в практических реализациях ограничиваются перебором нескольких функций, про которые известно, что они являются ядрами, и выбирают среди них лучшую при помощи кросс-валидации. Кроме того, существуют правила порождения ядер, которые также применяются для расширения пространства перебираемых функций.
 
 
 
Конструктивные методы синтеза ядер:
 
 
# $K(\vec{x}_1, \vec{x}_2) = \langle \vec{x}_1, \vec{x}_2 \rangle \quad$ (скалярное произведение)
 
# $K(\vec{x}_1, \vec{x}_2) = \alpha \quad$ (константа $\alpha \in \mathbb{R}_+$)
 
# $K(\vec{x}_1, \vec{x}_2) = K_1(\vec{x}_1, \vec{x}_2) + K_2(\vec{x}_1, \vec{x}_2) \quad$ (сумма ядер)
 
# $K(\vec{x}_1, \vec{x}_2) = K_1(\vec{x}_1, \vec{x}_2) * K_2(\vec{x}_1, \vec{x}_2) \quad$ (произведение ядер)
 
# $K(\vec{x}_1, \vec{x}_2) = \psi(\vec{x}_1) * \psi(\vec{x}_2) \quad$ (произведение функций $\psi : X \to \mathbb{R}$)
 
# $K(\vec{x}_1, \vec{x}_2) = K_1(\phi(\vec{x}_1), \phi(\vec{x}_2)) \quad$ (композиция ядра и функции $\phi : X \to X$)
 
# $K(\vec{x}_1, \vec{x}_2) = \int\limits_X s(\vec{x}_1, \vec{z}) s(\vec{x}_2, \vec{z}) d \vec{z} \quad$ ($s : X \times X \to \mathbb{R}$ — симметричная интегрируемая функция)
 
# $K(\vec{x}_1, \vec{x}_2) = f(K_1(\vec{x}_1, \vec{x}_2)) \quad$ ($f: \mathbb{R} \to \mathbb{R}$ представима в виде сходящегося степенного ряда с неотрицательными коэффициентами)
 
 
 
Существует несколько "стандартных" ядер, которые соответствуют известным алгоритмам классификации:
 
 
* $K(\vec{x}_1, \vec{x}_2) = (\langle \vec{x}_1, \vec{x}_2 \rangle + c)^d, \quad c, d \in \mathbb{R}$ — полиномиальное ядро
 
* $K(\vec{x}_1, \vec{x}_2) = \sigma(\langle \vec{x}_1, \vec{x}_2 \rangle)$ — нейросеть с заданной функцией активации $\sigma(z)$ (не при всех $\sigma$ является ядром)
 
* $K(\vec{x}_1, \vec{x}_2) = \exp(-\beta \lVert \vec{x}_1 - \vec{x}_2 \rVert^2)$ — сеть радиальных базисных функций (англ. ''RBF'')
 
  
 
== Преимущества и недостатки SVM ==
 
== Преимущества и недостатки SVM ==
Строка 245: Строка 204:
 
Преимущества SVM перед методом стохастического градиента и нейронными сетями:
 
Преимущества SVM перед методом стохастического градиента и нейронными сетями:
  
* Задача выпуклого квадратичного программирования хорошо изучена и имеет единственное решение
+
* Задача выпуклого квадратичного программирования хорошо изучена и имеет единственное решение.
* Метод опорных векторов эквивалентен двухслойной нейронной сети, где число нейронов на скрытом слое определяется автоматически как число опорных векторов
+
* Метод опорных векторов эквивалентен двухслойной нейронной сети, где число нейронов на скрытом слое определяется автоматически как число опорных векторов.
* Принцип оптимальной разделяющей гиперплоскости приводит к максимизации ширины разделяющей полосы, а следовательно, к более уверенной классификации
+
* Принцип оптимальной разделяющей гиперплоскости приводит к максимизации ширины разделяющей полосы, а следовательно, к более уверенной классификации.
  
 
Недостатки классического SVM:
 
Недостатки классического SVM:
  
* Неустойчивость к шуму: выбросы в исходных данных становятся опорными объектами-нарушителями и напрямую влияют на построение разделяющей гиперплоскости
+
* Неустойчивость к шуму: выбросы в исходных данных становятся опорными объектами-нарушителями и напрямую влияют на построение разделяющей гиперплоскости.
* Не описаны общие методы построения ядер и спрямляющих пространств, наиболее подходящих для конкретной задачи
+
* Не описаны общие методы построения ядер и спрямляющих пространств, наиболее подходящих для конкретной задачи.
* Нет отбора признаков
+
* Нет отбора признаков.
* Необходимо подбирать константу $C$ при помощи кросс-валидации
+
* Необходимо подбирать константу $C$ при помощи кросс-валидации.
  
 
== Модификации ==
 
== Модификации ==
Строка 260: Строка 219:
 
Существуют различные дополнения и модификации метода опорных векторов, направленные на устранение описанных недостатков:
 
Существуют различные дополнения и модификации метода опорных векторов, направленные на устранение описанных недостатков:
  
* [[Метод релевантных векторов (Relevance Vector Machine, RVM)]]
+
* [http://jmlr.csail.mit.edu/papers/v1/tipping01a.html Метод релевантных векторов (Relevance Vector Machine, RVM)]
* [[1-norm SVM (LASSO SVM)]]
+
* [https://papers.nips.cc/paper/2450-1-norm-support-vector-machines.pdf 1-norm SVM (LASSO SVM)]
* [[Doubly Regularized SVM (ElasticNet SVM)]]
+
* [http://www3.stat.sinica.edu.tw/statistica/oldpdf/A16n214.pdf Doubly Regularized SVM (ElasticNet SVM)]
* [[Support Features Machine (SFM)]]
+
* [https://arxiv.org/abs/1901.09643v1 Support Features Machine (SFM)]
* [[Relevance Features Machine (RFM)]]
+
* [http://www.robots.ox.ac.uk/~minhhoai/papers/SVMFeatureWeight_PR.pdf Relevance Features Machine (RFM)]
  
 
== См. также ==
 
== См. также ==
 +
* [[Общие понятия]]
 +
* [[Ядра]]
 
* [[Обзор библиотек для машинного обучения на Python]]
 
* [[Обзор библиотек для машинного обучения на Python]]
* [[Общие понятия]]
 
  
 
== Примечания ==
 
== Примечания ==

Версия 00:29, 5 апреля 2019

Метод опорных векторов (англ. support vector machine, SVM) — один из наиболее популярных методов обучения, который применяется для решения задач классификации и регрессии. Основная идея метода заключается в построении гиперплоскости, разделяющей объекты выборки наиболее оптимальным способом. Алгоритм работает в предположении, что чем больше расстояние (зазор) между разделяющей гиперплоскостью и объектами разделяемых классов, тем меньше будет средняя ошибка классификатора.

Метод опорных векторов в задаче классификации

Рассмотрим задачу бинарной классификации, в которой объектам из $X=\mathbb{R}^n$ соответствует один из двух классов $Y = \{-1, +1\}$.

Пусть задана обучающая выборка пар "объект-ответ": $T^\ell = (\vec{x}_i, y_i)_{i=1}^\ell$. Необходимо построить алгоритм классификации $a(\vec{x}) : X \to Y$.

Разделяющая гиперплоскость

Примеры разделяющих гиперплоскостей в $\mathbb{R}^2$

В пространстве $\mathbb{R}^n$ уравнение $\langle \vec{w}, \vec{x} \rangle - b = 0$ при заданных $\vec{w}$ и $b$ определяет гиперплоскость — множество векторов $\vec{x} = (x_1, \ldots, x_n)$, принадлежащих пространству меньшей размерности $\mathbb{R}^{n-1}$. Например, для $\mathbb{R}^1$ гиперплоскостью является точка, для $\mathbb{R}^2$ — прямая, для $\mathbb{R}^3$ — плоскость и т.д. Параметр $\vec{w}$ определяет вектор нормали к гиперплоскости, а через $\frac{b}{\lVert \vec{w} \rVert}$ выражается расстояние от гиперплоскости до начала координат.

Гиперплоскость делит $\mathbb{R}^n$ на два полупространства: $\langle \vec{w}, \vec{x} \rangle - b > 0$ и $\langle \vec{w}, \vec{x} \rangle - b < 0$.

Говорят, что гиперплоскость разделяет два класса $C_1$ и $C_2$, если объекты этих классов лежат по разные стороны от гиперплоскости, то есть выполнено либо

$\begin{cases}\langle \vec{w}, \vec{x} \rangle - b > 0, && \forall x \in C_1 \\ \langle \vec{w}, \vec{x} \rangle - b < 0, && \forall x \in C_2\end{cases}$

либо

$\begin{cases}\langle \vec{w}, \vec{x} \rangle - b < 0, && \forall x \in C_1 \\ \langle \vec{w}, \vec{x} \rangle - b > 0, && \forall x \in C_2\end{cases}$

Линейно разделимая выборка

Пусть выборка линейно разделима, то есть существует некоторая гиперплоскость, разделяющая классы $-1$ и $+1$. Тогда в качестве алгоритма классификации можно использовать линейный пороговый классификатор:

$a(\vec{x}) = sign(\langle \vec{w}, \vec{x} \rangle - b) = sign\left(\sum\limits_{i=1}^\ell w_i x_i - b\right)$

где $\vec{x} = (x_1, \ldots, x_n)$ — вектор значений признаков объекта, а $\vec{w} = (w_1, \ldots, w_n) \in \mathbb{R}^n$ и $b \in \mathbb{R}$ — параметры гиперплоскости.

Но для двух линейно разделимых классов возможны различные варианты построения разделяющих гиперплоскостей. Метод опорных векторов выбирает ту гиперплоскость, которая максимизирует отступ между классами:

Определение:
Отступ (англ. margin) — характеристика, оценивающая, насколько объект "погружён" в свой класс, насколько типичным представителем класса он является. Чем меньше значение отступа $M_i$, тем ближе объект $\vec{x}_i$ подходит к границе классов и тем выше становится вероятность ошибки. Отступ $M_i$ отрицателен тогда и только тогда, когда алгоритм $a(x)$ допускает ошибку на объекте $\vec{x}_i$.

Для линейного классификатора отступ определяется уравнением: $M_i(\vec{w}, b) = y_i(\langle \vec{w}, \vec{x}_i \rangle - b)$

Если выборка линейно разделима, то существует такая гиперплоскость, отступ от которой до каждого объекта положителен:

$\exists \vec{w}, b : \; M_i(\vec{w}, b) = y_i(\langle \vec{w}, \vec{x}_i \rangle - b) > 0, \; i = 1\ldots\ell$

Мы хотим построить такую разделяющую гиперплоскость, чтобы объекты обучающей выборки находились на наибольшем расстоянии от неё.

Оптимальная разделяющая гиперплоскость в $\mathbb{R}^2$

Заметим, что при умножении $\vec{w}$ и $b$ на константу $c \neq 0$ уравнение $\langle c\vec{w}, \vec{x} \rangle - cb = 0$ определяет ту же самую гиперплоскость, что и $\langle \vec{w}, \vec{x} \rangle - b = 0$. Для удобства проведём нормировку: выберем константу $c$ таким образом, чтобы $\min M_i(\vec{w}, b) = 1$. При этом в каждом из двух классов найдётся хотя бы один "граничный" объект обучающей выборки, отступ которого равен этому минимуму: иначе можно было бы сместить гиперплоскость в сторону класса с большим отступом, тем самым увеличив минимальное расстояние от гиперплоскости до объектов обучающей выборки.

Обозначим любой "граничный" объект из класса $+1$ как $\vec{x}_+$, из класса $-1$ как $\vec{x}_-$. Их отступ равен единице, то есть

$\begin{cases} M_+(\vec{w}, b) = (+1)(\langle \vec{w}, \vec{x}_+ \rangle - b) = 1 \\ M_-(\vec{w}, b) = (-1)(\langle \vec{w}, \vec{x}_- \rangle - b) = 1 \end{cases}$

Нормировка позволяет ограничить разделяющую полосу между классами: $\{x: -1 < \langle \vec{w}, \vec{x}_i \rangle - b < 1\}$. Внутри неё не может лежать ни один объект обучающей выборки. Ширину разделяющей полосы можно выразить как проекцию вектора $\vec{x}_+ - \vec{x}_-$ на нормаль к гиперплоскости $\vec{w}$. Чтобы разделяющая гиперплоскость находилась на наибольшем расстоянии от точек выборки, ширина полосы должна быть максимальной:

$\frac{\langle \vec{x}_+ - \vec{x}_-, \vec{w} \rangle}{\lVert w \rVert} = \frac{\langle \vec{x}_+, \vec{w} \rangle - \langle \vec{x}_-, \vec{w} \rangle - b + b}{\lVert w \rVert} = \frac{(+1)\left(\langle \vec{x}_+, \vec{w} \rangle - b\right) \, + \, (-1)\left(\langle \vec{x}_-, \vec{w} \rangle - b\right)}{\lVert w \rVert} = \\ = \frac{M_+(\vec{w}, b) \, + \, M_-(\vec{w}, b)}{\lVert w \rVert} = \frac{2}{\lVert w \rVert} \to \max \; \Rightarrow \; \lVert w \rVert \to \min$

Это приводит нас к постановке задачи оптимизации в терминах квадратичного программирования:

$\begin{cases} \lVert \vec{w} \rVert^2 \to \min\limits_{w,b} \\ M_i(\vec{w}, b) \geq 1, \quad i = 1, \ldots, \ell \end{cases}$

Линейно неразделимая выборка

На практике линейно разделимые выборки практически не встречаются: в данных возможны выбросы и нечёткие границы между классами. В таком случае поставленная выше задача не имеет решений, и необходимо ослабить ограничения, позволив некоторым объектам попадать на "территорию" другого класса. Для каждого объекта отнимем от отступа некоторую положительную величину $\xi_i$, но потребуем чтобы эти введённые поправки были минимальны. Это приведёт к следующей постановке задачи, называемой также SVM с мягким отступом (англ. soft-margin SVM):

$\begin{cases} \frac{1}{2} \lVert \vec{w} \rVert^2 \color{brown}{+ C \sum\limits_{i=1}^\ell \xi_i} \to \min\limits_{w, b, \color{brown}{\xi}} \\ M_i(\vec{w}, b) \geq 1 \color{brown}{- \xi_i}, \quad i = 1, \ldots, \ell \\ \color{brown}{\xi_i \geq 0, \quad i = 1, \ldots, \ell} \\ \end{cases}$

Мы не знаем, какой из функционалов $\frac{1}{2} \lVert \vec{w} \rVert^2$ и $\sum\limits_{i=1}^\ell \xi_i$ важнее, поэтому вводим коэффициент $C$, который будем оптимизировать с помощью кросс-валидации. В итоге мы получили задачу, у которой всегда есть единственное решение.

Заметим, что мы можем упростить постановку задачи:

$\begin{cases} \xi_i \geq 0 \\ \xi_i \geq 1 - M_i(\vec{w}, b) \\ \sum\limits_{i=1}^\ell \xi_i \to \min \end{cases} \,\Rightarrow\, \begin{cases} \xi_i \geq \max(0, 1 - M_i(\vec{w}, b)) \\ \sum\limits_{i=1}^\ell \xi_i \to \min \end{cases} \,\Rightarrow\, \xi_i = (1- M_i(\vec{w}, b))_+$

Получим эквивалентную задачу безусловной минимизации:

$\frac{1}{2} \lVert \vec{w} \rVert^2 + C \sum\limits_{i=1}^\ell \left(1 - M_i(\vec{w}, b)\right)_+ \to \min\limits_{w, b}$

Теперь научимся её решать.

Теорема (Условия Каруша—Куна—Таккера):
Пусть поставлена задача нелинейного программирования с ограничениями:

$$ \begin{cases} f(x) \to \min\limits_{x \in X} \\ g_i(x) \leq 0,\;i=1\ldots m \\ h_j(x) = 0,\;j=1\ldots k \end{cases} $$

Если $x$ — точка локального минимума при наложенных ограничениях, то существуют такие множители $\mu_i, i = 1\ldots m$, $\;\lambda_j, j = 1\ldots k$, что для функции Лагранжа $L(x; \mu, \lambda)$ выполняются условия:

$$\begin{cases}\frac{\partial L}{\partial x} = 0, \quad L(x; \mu, \lambda) = f(x) + \sum\limits_{i=1}^m \mu_i g_i(x) + \sum\limits_{j=1}^k \lambda_j h_j(x) \\ g_i(x) \leq 0,\;h_j(x) = 0 \quad \text{(исходные ограничения)} \\ \mu_i \geq 0 \quad \text{(двойственные ограничения)} \\ \mu_i g_i(x) = 0 \quad \text{(условие дополняющей нежёсткости)} \end{cases}$$

При этом искомая точка является седловой точкой функции Лагранжа: минимумом по $x$ и максимумом по двойственным переменным $\mu$.

По теореме Каруша—Куна—Таккера, поставленная нами задача минимизации эквивалентна двойственной задаче поиска седловой точки функции Лагранжа:

$\mathscr{L}(\vec{w},b,\xi; \lambda, \eta) = \frac{1}{2} \lVert w \rVert^2 - \sum\limits_{i=1}^\ell \lambda_i \left(M_i(\vec{w}, b) - 1\right) - \sum\limits_{i=1}^\ell \xi_i \left(\lambda_i + \eta_i - C\right)$

$\lambda_i$ — переменные, двойственные к ограничениям $M_i \geq 1 - \xi_i$

$\eta_i$ — переменные, двойственные к ограничениям $\xi_i \geq 0$


Запишем необходимые условия седловой точки функции Лагранжа:

$\begin{cases} \frac{\partial \mathscr{L}}{\partial w} = 0, \quad \frac{\partial \mathscr{L}}{\partial b} = 0, \quad \frac{\partial \mathscr{L}}{\partial \xi} = 0 \\ \xi_i \geq 0, \quad \lambda_i \geq 0, \quad \eta_i \geq 0, && i = 1, \ldots, \ell \\ \lambda_i = 0 \;\text{либо}\; M_i(\vec{w},b) = 1 - \xi_i, && i = 1, \ldots, \ell \\ \eta_i = 0 \;\text{либо}\; \xi_i = 0, && i = 1, \ldots, \ell \end{cases}$


Продифференцируем функцию Лагранжа и приравняем к нулю производные. Получим следующие ограничения:

$\begin{array}{lcl} \frac{\partial \mathscr{L}}{\partial w} = \vec{w} - \sum\limits_{i=1}^\ell \lambda_i y_i \vec{x}_i = 0 & \Rightarrow & \vec{w} = \sum\limits_{i=1}^\ell \lambda_i y_i \vec{x}_i \\ \frac{\partial \mathscr{L}}{\partial b} = -\sum\limits_{i=1}^\ell \lambda_i y_i = 0 & \Rightarrow & \sum\limits_{i=1}^\ell \lambda_i y_i = 0 \\ \frac{\partial \mathscr{L}}{\partial \xi_i} = -\lambda_i - \eta_i + C = 0 & \Rightarrow & \eta_i + \lambda_i = C, \quad i = 1, \ldots, \ell \end{array}$


Заметим, что $\eta_i \geq 0$, $\lambda_i \geq 0$, $C > 0$, поэтому из последнего ограничения получаем $0 \leq \eta_i \leq C$, $0 \leq \lambda_i \leq C$.

Диапазон значений $\lambda_i$ (которые, как указано выше, соответствуют ограничениям на величину отступа) позволяет нам разделить объекты обучающей выборки на три типа:

  1. $\lambda_i = 0 \; \Rightarrow \; \eta_i = C; \; \xi_i = 0; \; M_i \geq 1 \;$ — периферийные (неинформативные) объекты
    Эти объекты лежат в своём классе, классифицируются верно и не влияют на выбор разделяющей гиперплоскости (см. уравнение для $\vec{w}$)
  2. $0 < \lambda_i < C \; \Rightarrow \; 0 < \eta_i < C; \; \xi_i = 0; \; M_i = 1 \;$ — опорные граничные объекты
    Эти объекты лежат ровно на границе разделяющей полосы на стороне своего класса
  3. $\lambda_i = C \; \Rightarrow \; \eta_i = 0; \; \xi_i > 0; \; M_i < 1 \;$ — опорные объекты-нарушители
    Эти объекты лежат внутри разделяющей полосы или на стороне чужого класса


Определение:
Опорный объект (опорный вектор, англ. support vector) — объект $\vec{x}_i$, соответствующий которому множитель Лагранжа отличен от нуля: $\lambda_i \neq 0$.


Теперь подставим ограничения, которые мы получили при дифференцировании, в функцию Лагранжа. Получим следующую постановку двойственной задачи, которая зависит только от двойственных переменных $\lambda$:

$\begin{cases} -\mathscr{L}(\lambda) = -\sum\limits_{i=1}^\ell \lambda_i + \frac{1}{2} \sum\limits_{i=1}^\ell \sum\limits_{j=1}^\ell \lambda_i \lambda_j y_i y_j \langle \vec{x}_i, \vec{x}_j \rangle \to \min\limits_\lambda \\ 0 \leq \lambda_i \leq C, \quad i = 1, \ldots, \ell \\ \sum\limits_{i=1}^\ell \lambda_i y_i = 0 \end{cases}$

Это также задача квадратичного программирования. Решение задачи лежит в пересечении $\ell$-мерного куба с ребром $C$ и гиперплоскости $\langle \lambda, y \rangle = 0$, что является выпуклым многогранником размерности $\ell-1$. В этом многограннике нужно найти минимум выпуклого квадратичного функционала. Следовательно, данная задача имеет единственное решение.

Существуют различные методы поиска решения: можно воспользоваться универсальным солвером задачи квадратичного программирования (CPLEX, Gurobi), либо алгоритмом, учитывающим специфические особенности SVM (SMO, INCAS).

После того, как мы получили вектор коэффициентов $\vec{\lambda}$, можем выразить решение прямой задачи через решение двойственной:

$\begin{cases} \vec{w} = \sum\limits_{i=1}^\ell \lambda_i y_i \vec{x}_i \\ b = \langle \vec{w}, \vec{x}_i \rangle - y_i, \quad \forall i: \lambda_i > 0, M_i = 1 \end{cases}$

На практике для повышения вычислительной устойчивости рекомендуется при расчёте $b$ брать медиану по опорным граничным объектам:

$b = med\{ \langle \vec{w}, \vec{x}_i \rangle - y_i : \lambda_i > 0, M_i = 1, i = 1, \ldots, \ell\}$

Теперь можем переписать наш линейный классификатор, выразив $\vec{w}$ через $\vec{\lambda}$:

$a(x) = sign \left(\sum\limits_{i=1}^\ell \lambda_i y_i \langle \vec{x}_i, \vec{x} \rangle - b\right)$

Нелинейное обобщение, kernel trick

Существует ещё один подход к решению проблемы линейной разделимости, известный как трюк с ядром (kernel trick). Если выборка объектов с признаковым описанием из $X = \mathbb{R}^n$ не является линейно разделимой, мы можем предположить, что существует некоторое пространство $H$, вероятно, большей размерности, при переходе в которое выборка станет линейно разделимой. Пространство $H$ здесь называют спрямляющим, а функцию перехода $\psi : X \to H$ — спрямляющим отображением. Построение SVM в таком случае происходит так же, как и раньше, но в качестве векторов признаковых описаний используются векторы $\psi(\vec{x})$, а не $\vec{x}$. Соответственно, скалярное произведение $\langle \vec{x}_1, \vec{x}_2 \rangle$ в пространстве $X$ везде заменяется скалярным произведением $\langle \psi(\vec{x}_1), \psi(\vec{x}_2) \rangle$ в пространстве $H$. Отсюда следует, что пространство $H$ должно быть гильбертовым, так как в нём должно быть определено скалярное произведение.

Обратим внимание на то, что постановка задачи и алгоритм классификации не используют в явном виде признаковое описание и оперируют только скалярными произведениями признаков объектов. Это даёт возможность заменить скалярное произведение в пространстве $X$ на ядро — функцию, являющуюся скалярным произведением в некотором $H$. При этом можно вообще не строить спрямляющее пространство в явном виде, и вместо подбора $\psi$ подбирать непосредственно ядро.

Постановка задачи с применением ядер приобретает вид:

$\begin{cases} -\mathscr{L}(\lambda) = -\sum\limits_{i=1}^\ell \lambda_i + \frac{1}{2} \sum\limits_{i=1}^\ell \sum\limits_{j=1}^\ell \lambda_i \lambda_j y_i y_j \color{brown}{K(\vec{x}_i, \vec{x}_j)} \to \min\limits_\lambda \\ 0 \leq \lambda_i \leq C, \quad i = 1, \ldots, \ell \\ \sum\limits_{i=1}^\ell \lambda_i y_i = 0 \end{cases}$

$a(x) = sign \left(\sum\limits_{i=1}^\ell \lambda_i y_i \color{brown}{K(\vec{x}_i, \vec{x})} - b\right)$

Преимущества и недостатки SVM

Преимущества SVM перед методом стохастического градиента и нейронными сетями:

  • Задача выпуклого квадратичного программирования хорошо изучена и имеет единственное решение.
  • Метод опорных векторов эквивалентен двухслойной нейронной сети, где число нейронов на скрытом слое определяется автоматически как число опорных векторов.
  • Принцип оптимальной разделяющей гиперплоскости приводит к максимизации ширины разделяющей полосы, а следовательно, к более уверенной классификации.

Недостатки классического SVM:

  • Неустойчивость к шуму: выбросы в исходных данных становятся опорными объектами-нарушителями и напрямую влияют на построение разделяющей гиперплоскости.
  • Не описаны общие методы построения ядер и спрямляющих пространств, наиболее подходящих для конкретной задачи.
  • Нет отбора признаков.
  • Необходимо подбирать константу $C$ при помощи кросс-валидации.

Модификации

Существуют различные дополнения и модификации метода опорных векторов, направленные на устранение описанных недостатков:

См. также

Примечания


Источники информации