Известные наборы данных — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
Строка 8: Строка 8:
 
Датасет MNIST {{---}} большой (порядка 60 000 тренировочных и 10 000 проверочных объектов) набор картинок с рукописными цифрами, часто используемый для тестирования различных алгоритмов распознавания образов. Он содержит черно-белые картинки размера 28x28 пикселей, исходно взятые из набора образков из бюро переписи населения США, к которым были добавлены тестовые образцы, написанные студентами американских университетов.
 
Датасет MNIST {{---}} большой (порядка 60 000 тренировочных и 10 000 проверочных объектов) набор картинок с рукописными цифрами, часто используемый для тестирования различных алгоритмов распознавания образов. Он содержит черно-белые картинки размера 28x28 пикселей, исходно взятые из набора образков из бюро переписи населения США, к которым были добавлены тестовые образцы, написанные студентами американских университетов.
  
 +
===Результаты===
 +
 +
На сайте<ref>[http://yann.lecun.com/exdb/mnist/]</ref> датасета можно найти список лучших результатов, достигнутых алгоритмами на это наборе данных. Так, худший из записанных результатов достигнут простым линейным классификатором (12% ошибок), а подавляющее большинство лучших результатов получены алгоритмами на основе нейронных сетей. Так, ансамбль из 35 сверточных нейронных сетей в 2012 году сумел получить всего 0.23% ошибок на датасете, что является очень хорошим результатом, вполне сравнимым с человеком.
  
 
==Iris==
 
==Iris==
  
 
==ImageNet==
 
==ImageNet==

Версия 11:16, 7 апреля 2019

Известные наборы данных

MNIST

Описание

MnistExamples.png

Датасет MNIST — большой (порядка 60 000 тренировочных и 10 000 проверочных объектов) набор картинок с рукописными цифрами, часто используемый для тестирования различных алгоритмов распознавания образов. Он содержит черно-белые картинки размера 28x28 пикселей, исходно взятые из набора образков из бюро переписи населения США, к которым были добавлены тестовые образцы, написанные студентами американских университетов.

Результаты

На сайте[1] датасета можно найти список лучших результатов, достигнутых алгоритмами на это наборе данных. Так, худший из записанных результатов достигнут простым линейным классификатором (12% ошибок), а подавляющее большинство лучших результатов получены алгоритмами на основе нейронных сетей. Так, ансамбль из 35 сверточных нейронных сетей в 2012 году сумел получить всего 0.23% ошибок на датасете, что является очень хорошим результатом, вполне сравнимым с человеком.

Iris

ImageNet