Обсуждение участника:Mishenkoil — различия между версиями
(Добавлены 2я формулировка ЛЛЛ) |
(Добавлены задачи и источники) |
||
Строка 1: | Строка 1: | ||
== Локальная лемма Ловаса == | == Локальная лемма Ловаса == | ||
− | Бывают примеры, когда очень мала вероятность самого события, но тем не менее можно утверждать, что оно заведомо произойдет. Например, если каждое из большого количества независимых событий происходит с положительной вероятностью, то с положительной (но возможно очень маленькой) вероятностью произойдут все они одновременно. Следующая важная теорема обобщает это наблюдение на случай “слабо зависимых” событий. | + | Бывают примеры, когда очень мала вероятность самого события, но тем не менее можно утверждать, что оно заведомо произойдет. Например, если каждое из большого количества независимых событий происходит с положительной вероятностью, то с положительной ''(но возможно очень маленькой)'' вероятностью произойдут все они одновременно. Следующая важная теорема обобщает это наблюдение на случай “слабо зависимых” событий. |
{{Теорема | {{Теорема | ||
Строка 41: | Строка 41: | ||
\end{equation} | \end{equation} | ||
</tex><br> | </tex><br> | ||
− | что и требовалось (здесь первое неравенство уже доказано, а второе следует из индукционного предположения). | + | что и требовалось ''(здесь первое неравенство уже доказано, а второе следует из индукционного предположения)''. |
}} | }} | ||
Строка 59: | Строка 59: | ||
|proof=Выберем <tex>x_i = x = 1 / (d + 1)</tex>. Тогда <tex>(1 − x)^d \geq 1 / e</tex> - это следует, например, из определения числа $e$. Следовательно <tex>p \leq x(1 − x)^d</tex>, так что выполняются условия локальной леммы. | |proof=Выберем <tex>x_i = x = 1 / (d + 1)</tex>. Тогда <tex>(1 − x)^d \geq 1 / e</tex> - это следует, например, из определения числа $e$. Следовательно <tex>p \leq x(1 − x)^d</tex>, так что выполняются условия локальной леммы. | ||
}} | }} | ||
+ | |||
+ | ==Применение локальной леммы== | ||
+ | |||
+ | {{Задача | ||
+ | |definition=пукпук | ||
+ | }} | ||
+ | |||
+ | '''Доказательство:'''<br> | ||
+ | пукпук | ||
+ | |||
+ | ==Применение симметричной версии локальной леммы== | ||
+ | |||
+ | {{Задача | ||
+ | |definition=Пусть $G$ - граф, степени всех вершин которого не больше $d$, $P_i$ - непересекающиеся подмножества множества вершин графа $G$ такие, что <tex>|P_i| > 2e \cdot d</tex>. Тогда можно выбрать в каждом $P_i$ по вершине так, что никакие две соединенные ребром вершины не выбраны. | ||
+ | }} | ||
+ | |||
+ | '''Доказательство:'''<br> | ||
+ | Уменьшим при необходимости некоторые $P_i$ так, чтобы для всякого $i$ было <tex>|P_i| = k := [2ed] + 1</tex>. Будем выбирать вершины <tex>x_i \in P_i</tex> случайно и независимо. Каждому ребру <tex>(u,v)</tex> графа $G$ сопоставим событие $A_{(u, v)}$: оба конца $u$, $v$ этого ребра выбраны. Очевидно, что вероятность каждого такого события не больше, чем $1/k^2$. В случае, если концы ребра принадлежат одному и тому же $P_i$ или один из них не принадлежит ни одному $P_i$, вероятность равна | ||
+ | $0$ и такие события мы далее не рассматриваем. Для ребра $(u, v)$, для которого, скажем <tex>u \in P_1, v \in P_2</tex>, рассмотрим все ребра, выходящие из вершин множеств $P_1$ и $P_2$. Всего будет не более, | ||
+ | чем $2kd - 2$ таких ребер ''(не считая ребра $(u, v)$)''. Заметим, что событие $A_{(u, v)}$ не зависит от всех других событий типа <tex>A_{(u', v')}</tex>, где <tex>(u', v')</tex> - ребро, соединяющее вершины множеств, отличных от $P_1$ и $P_2$.<br> Таким образом, для применения симметричной версии локальной леммы достаточно проверить, что <tex>e(2kd − 1) / k^2 < 1</tex>, что имеет место. | ||
+ | |||
+ | == Источники информации == | ||
+ | *[http://club.pdmi.ras.ru/oldsite/courses/07f_probmet/probmet3.pdf Конспект лекций Ф.В. Петрова {{---}} Локальная лемма Ласло Ловаса] | ||
+ | *[https://www.youtube.com/watch?v=Jht6zBVBS-w Лекция А.М.Райгородского в ШАД] | ||
+ | [[Категория: Дискретная математика и алгоритмы]] | ||
+ | [[Категория: Теория вероятности]] |
Версия 03:17, 5 апреля 2020
Содержание
Локальная лемма Ловаса
Бывают примеры, когда очень мала вероятность самого события, но тем не менее можно утверждать, что оно заведомо произойдет. Например, если каждое из большого количества независимых событий происходит с положительной вероятностью, то с положительной (но возможно очень маленькой) вероятностью произойдут все они одновременно. Следующая важная теорема обобщает это наблюдение на случай “слабо зависимых” событий.
Теорема (Локальная лемма Ловаса): |
Пояснение: Пусть имеется семейство событий , и для каждого события выделено множество индексов такое, что не зависит от всех событий . Это означает, что для любого события , выражаемого через множество событий , события и независимы. Через будем обозначать дополнение события . Формулировка теоремы: |
Доказательство: |
Докажем более сильное утверждение: если |
Замечание. Как видно из доказательства, вместо независимости каждого события $A_i$ от событий, не входящих в $M(i)$ достаточно требовать для любого множества $I$ такого, что
Иногда используется именно такая версия локальной леммы.
В случае, когда оценки на вероятности всех событий совпадают, получаем следующее утверждение.
Теорема (Симметричная версия локальной леммы): |
Предположим, что каждое событие $A_i$ происходит с вероятностью не больше, чем $p$ и для всех $i$. Тогда с положительной вероятностью ни одно событие $A_i$ не происходит. |
Доказательство: |
Выберем | . Тогда - это следует, например, из определения числа $e$. Следовательно , так что выполняются условия локальной леммы.
Применение локальной леммы
Задача: |
пукпук |
Доказательство:
пукпук
Применение симметричной версии локальной леммы
Задача: |
Пусть $G$ - граф, степени всех вершин которого не больше $d$, $P_i$ - непересекающиеся подмножества множества вершин графа $G$ такие, что | . Тогда можно выбрать в каждом $P_i$ по вершине так, что никакие две соединенные ребром вершины не выбраны.
Доказательство:
Уменьшим при необходимости некоторые $P_i$ так, чтобы для всякого $i$ было . Будем выбирать вершины случайно и независимо. Каждому ребру графа $G$ сопоставим событие $A_{(u, v)}$: оба конца $u$, $v$ этого ребра выбраны. Очевидно, что вероятность каждого такого события не больше, чем $1/k^2$. В случае, если концы ребра принадлежат одному и тому же $P_i$ или один из них не принадлежит ни одному $P_i$, вероятность равна
$0$ и такие события мы далее не рассматриваем. Для ребра $(u, v)$, для которого, скажем , рассмотрим все ребра, выходящие из вершин множеств $P_1$ и $P_2$. Всего будет не более,
чем $2kd - 2$ таких ребер (не считая ребра $(u, v)$). Заметим, что событие $A_{(u, v)}$ не зависит от всех других событий типа , где - ребро, соединяющее вершины множеств, отличных от $P_1$ и $P_2$.
Таким образом, для применения симметричной версии локальной леммы достаточно проверить, что , что имеет место.