Карлукова M32342 временная статья — различия между версиями
| Строка 10: | Строка 10: | ||
<tex>\Rightarrow</tex> | <tex>\Rightarrow</tex> | ||
| − | Напишем друг под другом несколько производящих функций: | + | Напишем друг под другом несколько производящих функций и соответствующих им формальных степенных рядов: |
<tex>A(t) = a_0 + a_1 \cdot t + a_2 \cdot t^2 + \ldots + a_k \cdot t^k + \ldots + a_n \cdot t^n + \ldots</tex> | <tex>A(t) = a_0 + a_1 \cdot t + a_2 \cdot t^2 + \ldots + a_k \cdot t^k + \ldots + a_n \cdot t^n + \ldots</tex> | ||
| Строка 22: | Строка 22: | ||
<tex>-c_k \cdot t^k \cdot A(t) = 0 + 0 + 0 + \ldots - c_k \cdot a_0 \cdot t^k - \ldots - c_k \cdot a_{n - k} \cdot t^n + \ldots</tex> | <tex>-c_k \cdot t^k \cdot A(t) = 0 + 0 + 0 + \ldots - c_k \cdot a_0 \cdot t^k - \ldots - c_k \cdot a_{n - k} \cdot t^n + \ldots</tex> | ||
| − | + | Сложим все равенства и получим | |
| − | <tex>A(t) \cdot (1 - c_1 \cdot t - c_2 \cdot t^2 - \ldots - c_k \cdot t^k) = a_0 + (a_1 - c_1 \cdot a_0) \cdot t + (a_2 - c_1 \cdot a_1 - c_2 \cdot a_0) \cdot t^2 + \\ + \ldots + (a_{k - 1} - \sum\limits_{i = 1}^{k - 1} c_i \cdot a_{k - 1 - i}) \cdot t^{k - 1} + (a_k - \sum\limits_{i = 1}^k c_i \cdot a_{k - i}) \cdot t^k + \ldots + (a_n - \sum\limits_{i = 1}^n c_i \cdot a_{n - i}) \cdot t^n + \ldots</tex> | + | <tex>A(t) \cdot (1 - c_1 \cdot t - c_2 \cdot t^2 - \ldots - c_k \cdot t^k) = a_0 + (a_1 - c_1 \cdot a_0) \cdot t + (a_2 - c_1 \cdot a_1 - c_2 \cdot a_0) \cdot t^2 + \\ + \ldots + (a_{k - 1} - \sum\limits_{i = 1}^{k - 1} c_i \cdot a_{k - 1 - i}) \cdot t^{k - 1} + (a_k - \sum\limits_{i = 1}^k c_i \cdot a_{k - i}) \cdot t^k + \ldots + (a_n - \sum\limits_{i = 1}^n c_i \cdot a_{n - i}) \cdot t^n + \ldots</tex>. |
Так как <tex>\forall n \geqslant k: a_n = \sum\limits_{i = 1}^n c_i \cdot a_{n - i}</tex>, то все коэффициенты при степенях, начиная с <tex>k</tex>-ой включительно, обнулятся, а равенство примет следующий вид: | Так как <tex>\forall n \geqslant k: a_n = \sum\limits_{i = 1}^n c_i \cdot a_{n - i}</tex>, то все коэффициенты при степенях, начиная с <tex>k</tex>-ой включительно, обнулятся, а равенство примет следующий вид: | ||
Версия 22:49, 9 мая 2020
Примечание: в редактируемой статье указано, что достаточно рассматривать . :)
Теорема о связи этих понятий
| Теорема: |
Последовательность является линейной рекуррентной последовательностью с первыми заданными членами её производящая функция является дробно-рациональной, причём представимой в виде , , |
| Доказательство: |
|
Напишем друг под другом несколько производящих функций и соответствующих им формальных степенных рядов:
Сложим все равенства и получим . Так как , то все коэффициенты при степенях, начиная с -ой включительно, обнулятся, а равенство примет следующий вид: . Обозначим , а Тогда
Пусть , , . Перепишем первое равенство, выразив через и : . Так как , выполнено для . Расписывая по определению произведения степенных рядов, получаем Разобьём полученную сумму на две: . Вторая компонента равна нулю, поскольку . Тогда . Развернём выражение для : . Перенесём все слагаемые, кроме , вправо: . Видим, что — коэффициент линейной рекуррентной последовательности, где роли играют , причём это выполнено для всех , так как индекс , удовлетворяющий данному условию, выбирался произвольно. |