Участник:Mk17.ru — различия между версиями
(→Вероятность смещения на d единиц вправо (влево)) |
(→Вероятность смещения на d единиц вправо (влево)) |
||
Строка 33: | Строка 33: | ||
влево) задаётся формулой: | влево) задаётся формулой: | ||
− | *<tex>P = {C_{n}^k} p^k q^{n−k}, \quad k = 0, 1, . . . , n</tex> (1) | + | *<tex>P = {C_{n}^k} p^k q^{n−k}, \quad k = 0, 1, . . . , n</tex> <tex>(1)</tex> |
Смещение частицы и число прыжков влево и вправо связаны уравнением | Смещение частицы и число прыжков влево и вправо связаны уравнением | ||
− | *<tex>d = 1 · k + (−1) · (n − k) = 2k − n \quad</tex> (2) ''' | + | *<tex>d = 1 · k + (−1) · (n − k) = 2k − n \quad</tex> <tex>(2)</tex> ''' Такие собственные сноски тоже лучше делать кликабельными. Можно вынести их в отдельные разделы статьи''' |
откуда <tex>k = \frac{(n + d)}{2}</tex>. Понятно, что, поскольку частица сделала ровно <tex>n</tex> прыжков, | откуда <tex>k = \frac{(n + d)}{2}</tex>. Понятно, что, поскольку частица сделала ровно <tex>n</tex> прыжков, | ||
число прыжков вправо должно быть целым числом в интервале <tex>[0, n]</tex>, другими словами, <tex>P(\xi_n = m + d) = 0,</tex> если <tex>k = \frac{(n + d)}{2}, k \notin \{0, 1, . . . , n\}</tex>. Если же указанное | число прыжков вправо должно быть целым числом в интервале <tex>[0, n]</tex>, другими словами, <tex>P(\xi_n = m + d) = 0,</tex> если <tex>k = \frac{(n + d)}{2}, k \notin \{0, 1, . . . , n\}</tex>. Если же указанное | ||
− | ограничение выполнено, то в рамках нашей модели блужданий мы можем воспользоваться распределением Бернулли (1): '''вот тут хочется кликнуть на (1)''' | + | ограничение выполнено, то в рамках нашей модели блужданий мы можем воспользоваться распределением Бернулли <tex>(1)</tex>: '''вот тут хочется кликнуть на (1)''' |
*<tex> P(\xi_n = m + d) = {C_{n}^k} p^k q^{n−k}, \quad k = \frac{(n + d)}{2} </tex>, при обязательном условии <tex>k ∈ {0, 1, . . . , n}.</tex> | *<tex> P(\xi_n = m + d) = {C_{n}^k} p^k q^{n−k}, \quad k = \frac{(n + d)}{2} </tex>, при обязательном условии <tex>k ∈ {0, 1, . . . , n}.</tex> | ||
Строка 47: | Строка 47: | ||
'''Замечания'''. | '''Замечания'''. | ||
− | <tex>1)</tex> Ограничение <tex>0 \leq k \leq n </tex> по формуле (2) влечёт <tex>|d| \leq n</tex>. Это можно понять и без расчётов: если <tex>|d| > n</tex>, то частица не успевает дойти из начальной в конечную точку за <tex>n</tex> шагов. | + | <tex>1)</tex> Ограничение <tex>0 \leq k \leq n </tex> по формуле <tex>(2)</tex> влечёт <tex>|d| \leq n</tex>. Это можно понять и без расчётов: если <tex>|d| > n</tex>, то частица не успевает дойти из начальной в конечную точку за <tex>n</tex> шагов. |
<tex>2)</tex> При своём движении частица случайным образом выбирает одну из возможных траекторий. Для перехода из точки | <tex>2)</tex> При своём движении частица случайным образом выбирает одну из возможных траекторий. Для перехода из точки | ||
<tex>m</tex> в точку <tex>m</tex> за <tex>n</tex> шагов возможными являются все те и только те траектории длины | <tex>m</tex> в точку <tex>m</tex> за <tex>n</tex> шагов возможными являются все те и только те траектории длины | ||
<tex>n</tex>, в которых ровно <tex>k</tex> смещений вправо и <tex>n − k</tex> смещений влево, где <tex>k = \frac{(n + | <tex>n</tex>, в которых ровно <tex>k</tex> смещений вправо и <tex>n − k</tex> смещений влево, где <tex>k = \frac{(n + | ||
− | d)}{2}</tex>. Равенство (1) при этом можно интерпретировать так: вероятность того, что частица пройдет по одной из | + | d)}{2}</tex>. Равенство <tex>(1)</tex> при этом можно интерпретировать так: вероятность того, что частица пройдет по одной из |
возможных траекторий, равна <tex>p^k q^{n−k}</tex>, и всего существуют <tex>{C_{n}^k}</tex> таких траекторий, таким | возможных траекторий, равна <tex>p^k q^{n−k}</tex>, и всего существуют <tex>{C_{n}^k}</tex> таких траекторий, таким | ||
образом, | образом, |
Версия 00:05, 7 июня 2020
Содержание
Определение
Определение: |
Случайное блуждание (англ. Random walk) — математическая модель процесса случайных изменений — шагов в дискретные моменты времени, предполагается, что изменение на каждом шаге не зависит от предыдущих и от времени. В силу простоты анализа эта модель часто используется в разных сферах в математике, экономике, физике, но, как правило, такая модель является существенным упрощением реального процесса. |
Случайные блуждания по прямой
Представим частицу, которая движется по целым точкам на прямой. Перемещение из одной точки в другую происходит через равные промежутки времени. За один шаг частица из точки k с положительной вероятностью p перемещается в точку цепь Маркова:
и с положительной вероятностью перемещается в точку . Физической системе соответствуетЗаметим, что вернуться в какую-либо точку можно только за четное число шагов.
Вероятность смещения на d единиц вправо (влево)
Будем считать, что
. Это соответствует тому, что в начальный момент времени частица находилась в точке (здесь — фиксированное число) и затем начала случайно блуждать в соответствии с описанными выше правилами. Пусть — смещение частицы за шагов. Найдём для каждого .Справедливо равенство:
- , если
Представление через условную вероятность удобно, если нам необходимо явно указать, где находилась частица в начальный момент времени.
Наша физическая модель с математической точки зрения в точности отвечает схеме независимых испытаний Бернулли с двумя исходами —- движением вправо, который мы будем называть успехом, и движением вправо (неудачей). Пусть частица сделала прыжков. Вероятность того, что среди этих прыжков будет ровно прыжков вправо (или, что то же самое, прыжков влево) задаётся формулой:
Смещение частицы и число прыжков влево и вправо связаны уравнением
- Такие собственные сноски тоже лучше делать кликабельными. Можно вынести их в отдельные разделы статьи
откуда
. Понятно, что, поскольку частица сделала ровно прыжков, число прыжков вправо должно быть целым числом в интервале , другими словами, если . Если же указанное ограничение выполнено, то в рамках нашей модели блужданий мы можем воспользоваться распределением Бернулли : вот тут хочется кликнуть на (1)- , при обязательном условии
Замечания.
Ограничение по формуле влечёт . Это можно понять и без расчётов: если , то частица не успевает дойти из начальной в конечную точку за шагов.
При своём движении частица случайным образом выбирает одну из возможных траекторий. Для перехода из точки в точку за шагов возможными являются все те и только те траектории длины , в которых ровно смещений вправо и смещений влево, где . Равенство при этом можно интерпретировать так: вероятность того, что частица пройдет по одной из возможных траекторий, равна , и всего существуют таких траекторий, таким образом,
Задача о разорении игрока
Пусть начальный капитал
первого игрока составляет рублей, а капитал второго игрока рублей. Первый игрок выигрывает или проигрывает рубль с вероятностями и соответственно. Игра продолжается до тех пор, пока капитал первого игрока не уменьшится до нуля, либо не возрастет до . Поглощение точки в правом конце отрезка соответствует выигрышу первого игрока.Рассмотрим конечную цепь Маркова:
и
(2.1)
Вероятность выигрыша для первого игрока в момент времени
естьПо формуле полной вероятности:
или
Теорему о предельных вероятностях применить не можем, но заметим, что:
Положим
. Тогда
Переходя к пределу в (2.1) при
, получим
Так как
вероятность выигрыша для первого игрока, то . Рассматриваемая как функция от , вероятность является решением уравнения в конечных разностях- (2.2)
удовлетворяющим граничным условиям
. Теория решения таких уравнений аналогична теории линейных уравнений с постоянными коэффициентами.Пусть сначала
. Решение будем искать в виде , где является корнем характеристического уравнения . Корнями такого уравнения являются .Значит, функции
и удовлетворяют уравнению (2.2). Линейная комбинация- (2.3)
при любых
и также является решением. Подставляя граничные условия в (2.3), при и получим
Отсюда и из (2.3) находим
Вероятности выигрыша первым игроком
тоже удовлетворяют уравнению (2.2). Но граничными условиями станут Определяя из этих условий и , получим
Так как
, то с вероятностью один из игроков выиграет.Пусть теперь
. В этом случае и решение уравнения (2.2) нужно искать в видеС помощью граничных условий находим
В схеме блуждания по целым точкам с поглощением только в нуле вероятность события
, равна
События
вложены последовательно друг в другапоэтому вероятность поглощения в нуле равна
Источники информации
Все источники нужно сделать кликабельными