Подсчет деревьев — различия между версиями
Cuciev (обсуждение | вклад) м (Marked bin trees cosmetics) |
Cuciev (обсуждение | вклад) (Marked trees added) |
||
Строка 42: | Строка 42: | ||
= Помеченные деревья = | = Помеченные деревья = | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Теорема | {{Теорема | ||
|author=Кэли | |author=Кэли | ||
Строка 70: | Строка 63: | ||
Обозначим через <tex>T_n</tex> число корневых помеченных деревьев с <tex>n</tex> вершинами, т.е. число помеченных деревьев, в которых одна из вершин выделена и названа корнем.<br> | Обозначим через <tex>T_n</tex> число корневых помеченных деревьев с <tex>n</tex> вершинами, т.е. число помеченных деревьев, в которых одна из вершин выделена и названа корнем.<br> | ||
Число корневых помеченных деревьев с <tex>n</tex> вершинами в <tex>n</tex> раз больше числа помеченных деревьев с <tex>n</tex> вершинами: в качестве корня можно выбрать любую из <tex>n</tex> различных вершин. | Число корневых помеченных деревьев с <tex>n</tex> вершинами в <tex>n</tex> раз больше числа помеченных деревьев с <tex>n</tex> вершинами: в качестве корня можно выбрать любую из <tex>n</tex> различных вершин. | ||
+ | }} | ||
+ | |||
+ | == Подвешенные помеченные деревья с порядком на детях == | ||
+ | {{Утверждение | ||
+ | |statement=Число помеченных корневых деревьев с <tex>n</tex> вершинами с порядком на детях есть <tex>T_n = n!\cdot C_n</tex>. | ||
+ | |proof= | ||
+ | Как и в непомеченном случае, структура объекта остается неизменной:<br> | ||
+ | : <tex>T = U\times Seq(T)</tex><br> | ||
+ | Производящая функция будет иметь вид:<br> | ||
+ | : <tex>T(s) = s\dfrac{1}{1 - T(s)} \iff T(s) = \sum\limits_{n=1}^{\infty} \dfrac{1 - \sqrt{1 - 4s}}{2} \iff T(s) = \sum\limits_{n=1}^{\infty} \dfrac{C_nn!}{n!}s^n</tex><br> | ||
+ | Таким образом, число помеченных корневых деревьев с <tex>n</tex> с порядком на детях вершинами есть <tex>T_n = n!\cdot C_n</tex> | ||
+ | }} | ||
+ | |||
+ | == Подвешенные помеченные деревья без порядка на детях == | ||
+ | {{Утверждение | ||
+ | |statement=Как и в непомеченном случае, структура объекта остается неизменной: <tex>T = U\times Set(T)</tex>.<br> | ||
+ | Производящая функция будет иметь вид: <tex>T(s) = s\cdot e^{T(s)}</tex> | ||
}} | }} | ||
Версия 02:29, 9 июня 2020
Описание всех используемых далее комбинаторных объектов можно найти в статье "конструирование комбинаторных объектов и их подсчёт".
Содержание
Непомеченные деревья
Бинарные деревья
Утверждение: |
Число непомеченных бинарных деревьев: число Каталана). ( -ое |
Устройство бинарного дерева в терминах комбинаторных классов выражается следующим образом
|
Утверждение: |
Производящая функция числа непомеченных полных бинарных деревьев: . |
Устройство бинарного дерева в терминах комбинаторных классов выражается следующим образом |
Подвешенные непомеченные деревьея с порядком на детях
Пусть
— количество таких деревьев с вершинами. — множество всех последовательностей из данных деревьев. — количество последовательностей с суммарным количество вершин . Чтобы получить дерево из вершин, достаточно взять вершину, и подвесить к ней последовательность деревьев с суммарным количеством вершин . Тогда:- .
- число Каталана. , где — -ое
Подвешенные непомеченные деревья без порядка на детях
Пусть
— количество таких деревьев с вершинами. — множество всех лесов из данных деревьев, так как лес можно интерпретировать как мультимножество из деревьев. — количество лесов с суммарным количество вершин . — количество таких лесов из вершин, что деревья в них содержат не более чем вершин. Чтобы получить дерево из вершин, достаточно взять вершину и подвесить к ней лес деревьев с суммарным количеством вершин . Тогда:- .
- .
- .
Количество таких деревьев с [1].
вершинами образуют последовательность A000081Помеченные деревья
Теорема (Кэли): |
Число помеченных деревьев с вершинами равно . |
Доказательство: |
Можно доказать формулу двумя способами. Первый способ. Так как между помеченными деревьями порядка Код Прюфера), то количество помеченных деревьев совпадает с количеством последовательностей длины из чисел от до . и последовательностями длины из чисел от до существует биекция (Второй способ. С помощью матрицы Кирхгофа для полного графа на вершинах. Число помеченных деревьев порядка , очевидно, равно числу остовов в полном графе , которое есть по следствию теоремы Кирхгофа. |
Утверждение: |
Число помеченных корневых деревьев с вершинами есть . |
Данное утверждение является следствием теоремы Кэли. |
Подвешенные помеченные деревья с порядком на детях
Утверждение: |
Число помеченных корневых деревьев с вершинами с порядком на детях есть . |
Как и в непомеченном случае, структура объекта остается неизменной: Производящая функция будет иметь вид: |
Подвешенные помеченные деревья без порядка на детях
Утверждение: |
Как и в непомеченном случае, структура объекта остается неизменной: .Производящая функция будет иметь вид: |
Дополнительно
Теорема (Скойнс): |
Число 2-раскрашенных деревьев с вершинами одного цвета и вершинами другого равно . |
См.также
- Лемма Бёрнсайда и Теорема Пойа
- Числа Каталана
- Генерация комбинаторных объектов в лексикографическом порядке