Обсуждение:Метод производящих функций — различия между версиями
(→Непомеченные комбинаторные объекты) |
|||
Строка 207: | Строка 207: | ||
=Помеченные объекты= | =Помеченные объекты= | ||
+ | '''какое-то бесполезное введение. Что значит "удобнее"? просто есть такие классы и всё)''' | ||
Однако порой некоторые комбинаторные классы удобнее обозначать как помеченные. Например, — [https://e-maxx.ru/algo/counting_connected_graphs помеченные графы]. С помеченными объектами используется [https://en.wikipedia.org/wiki/Generating_function#Exponential_generating_function_(EGF) экспоненциальная производящая функция]. | Однако порой некоторые комбинаторные классы удобнее обозначать как помеченные. Например, — [https://e-maxx.ru/algo/counting_connected_graphs помеченные графы]. С помеченными объектами используется [https://en.wikipedia.org/wiki/Generating_function#Exponential_generating_function_(EGF) экспоненциальная производящая функция]. | ||
− | Напомню, что если <tex dpi="350">\left \{ a_i \right \}</tex> {{---}} считающая последовательность, то производящие функции выражаются следующим образом: | + | Напомню, '''Научный текст нужно писать безлично''' что если <tex dpi="350">\left \{ a_i \right \}</tex> {{---}} считающая последовательность, то производящие функции выражаются следующим образом: |
{| class="wikitable" | {| class="wikitable" | ||
Строка 249: | Строка 250: | ||
==Помеченные объекты== | ==Помеченные объекты== | ||
− | Помеченные комбинаторные объекты отличаются тем, что все атомы имеет разные значки | + | Помеченные комбинаторные объекты отличаются тем, что все атомы имеет разные значки; Если вес объекта равен <tex dpi="350">n</tex>, то все атомы пронумерованы различными целыми числами от <tex dpi="350">1</tex> до <tex dpi="350">n</tex>. |
<tex dpi="130">w(①)=1</tex> | <tex dpi="130">w(①)=1</tex> | ||
Строка 255: | Строка 256: | ||
<tex dpi="130">w(\circ)=0</tex> | <tex dpi="130">w(\circ)=0</tex> | ||
− | Далее под производящей функцией будет подразумеваться экспоненциальная производящая функция. | + | Далее под производящей функцией будет подразумеваться экспоненциальная производящая функция. '''это лучше вынести в самое начало раздела и сказать, почему''' |
{{Определение | {{Определение | ||
Строка 287: | Строка 288: | ||
==Пары комбинаторных классов (декартово произведение комбинаторных классов)== | ==Пары комбинаторных классов (декартово произведение комбинаторных классов)== | ||
− | Напрямую декартово произведение нам не даст корректный комбинаторный объект. | + | Напрямую декартово произведение нам не даст корректный комбинаторный объект. '''переформулируй''' |
Пусть <tex dpi="350">A= \{</tex> [[Файл:1-2.png|50px]] <tex dpi="350">\}</tex>, | Пусть <tex dpi="350">A= \{</tex> [[Файл:1-2.png|50px]] <tex dpi="350">\}</tex>, | ||
Строка 294: | Строка 295: | ||
Тогда пара <tex dpi="350">(</tex> [[Файл:1-2.png|50px]] <tex dpi="350">,</tex>[[Файл:1-2-3.png|50px]]<tex dpi="350">)</tex> будет иметь вес 5, но атомы не будут иметь различные пометки от 1 до 5. | Тогда пара <tex dpi="350">(</tex> [[Файл:1-2.png|50px]] <tex dpi="350">,</tex>[[Файл:1-2-3.png|50px]]<tex dpi="350">)</tex> будет иметь вес 5, но атомы не будут иметь различные пометки от 1 до 5. | ||
− | Поэтому введем | + | Поэтому введем оператор <tex dpi="350">A \star B</tex>, который |
# Перебирает все пары из <tex dpi="350">A</tex> и <tex dpi="350">B</tex>. | # Перебирает все пары из <tex dpi="350">A</tex> и <tex dpi="350">B</tex>. | ||
− | # В каждой паре перебирает все возможные способы перенумеровать атомы. Нумерация идёт в том же порядке, что и изначальная. То есть для каждого цикла при фиксированном наборе номеров есть ровно 1 способ занумеровать. Таким образом в классе <tex dpi="350">A \star B</tex> будет <tex dpi="350">(</tex> [[Файл:1-2.png|50px]] <tex dpi="350">,</tex>[[Файл:3-4-5.png|50px]]<tex dpi="350">)</tex>, но не будет <tex dpi="350">(</tex> [[Файл:1-2.png|50px]] <tex dpi="350">,</tex>[[Файл:3-5-4.png|50px]]<tex dpi="350">)</tex>. | + | # В каждой паре перебирает все возможные способы перенумеровать атомы. Нумерация идёт в том же порядке, что и изначальная. То есть для каждого цикла при фиксированном наборе номеров есть ровно 1 способ занумеровать. Таким образом, в классе <tex dpi="350">A \star B</tex> будет лежать <tex dpi="350">(</tex> [[Файл:1-2.png|50px]] <tex dpi="350">,</tex>[[Файл:3-4-5.png|50px]]<tex dpi="350">)</tex>, но не будет лежать <tex dpi="350">(</tex> [[Файл:1-2.png|50px]] <tex dpi="350">,</tex>[[Файл:3-5-4.png|50px]]<tex dpi="350">)</tex>. |
<tex dpi="350">c_n=\sum_{k=0}^na_kb_{n-k}\binom{n}{k}</tex>''([https://ru.wikipedia.org/wiki/Сочетание Сочетания])''<tex dpi="350">=\sum_{k=0}^na_kb_{n-k}\frac{n!}{k!(n-k)!}=n! \cdot \sum_{k=0}^n\frac{a_k}{k!}\frac{b_{n-k}}{(n-k)!}</tex> | <tex dpi="350">c_n=\sum_{k=0}^na_kb_{n-k}\binom{n}{k}</tex>''([https://ru.wikipedia.org/wiki/Сочетание Сочетания])''<tex dpi="350">=\sum_{k=0}^na_kb_{n-k}\frac{n!}{k!(n-k)!}=n! \cdot \sum_{k=0}^n\frac{a_k}{k!}\frac{b_{n-k}}{(n-k)!}</tex> | ||
Строка 308: | Строка 309: | ||
===Ограниченная конструкция=== | ===Ограниченная конструкция=== | ||
− | Последовательности длины <tex dpi="350">k</tex>, как и в непомеченных комбинаторных объектах, формируются следующим образом: | + | Последовательности длины <tex dpi="350">k</tex>, как и в непомеченных комбинаторных объектах, формируются следующим образом: |
* Мы составляем все возможные последовательности из <tex dpi="350">k</tex> объектов из <tex dpi="350">A</tex> | * Мы составляем все возможные последовательности из <tex dpi="350">k</tex> объектов из <tex dpi="350">A</tex> | ||
* Затем всеми возможными способами их перенумеруем. | * Затем всеми возможными способами их перенумеруем. | ||
+ | '''научный текст пишется безлично''' | ||
+ | |||
Обозначаются <tex dpi="350">Seq_k(A)</tex>. | Обозначаются <tex dpi="350">Seq_k(A)</tex>. | ||
+ | '''в научном тексте не должно быть неполных предложений''' | ||
<tex dpi="350">b_n=\sum_{t_1+t_2+...+t_k=n}\binom{n}{t_1}\cdot\binom{n-t_1}{t_2}\cdot...\cdot\binom{t_k}{t_k}\cdot\prod_{i=1}^{k}a_{t_i}=\sum_{t_1+t_2+...+t_k=n}\binom{n}{t_1, t_2,...,t_k}\cdot\prod_{i=1}^{k}a_{t_i}=\sum_{t_1+t_2+...+t_k=n}\frac{n!}{t_1! \cdot t_2! \cdot ... \cdot t_k!}\cdot\prod_{i=1}^{k}a_{t_i}=n!\sum_{t_1+t_2+...+t_k=n}\prod_{i=1}^{k}\frac{a_{t_i}}{t_i!}</tex> | <tex dpi="350">b_n=\sum_{t_1+t_2+...+t_k=n}\binom{n}{t_1}\cdot\binom{n-t_1}{t_2}\cdot...\cdot\binom{t_k}{t_k}\cdot\prod_{i=1}^{k}a_{t_i}=\sum_{t_1+t_2+...+t_k=n}\binom{n}{t_1, t_2,...,t_k}\cdot\prod_{i=1}^{k}a_{t_i}=\sum_{t_1+t_2+...+t_k=n}\frac{n!}{t_1! \cdot t_2! \cdot ... \cdot t_k!}\cdot\prod_{i=1}^{k}a_{t_i}=n!\sum_{t_1+t_2+...+t_k=n}\prod_{i=1}^{k}\frac{a_{t_i}}{t_i!}</tex> | ||
Строка 322: | Строка 326: | ||
Определение <tex dpi="350">Seq(A)</tex> и соответствующая производящая функция не изменились. | Определение <tex dpi="350">Seq(A)</tex> и соответствующая производящая функция не изменились. | ||
− | Действует ограничение на <tex dpi="350">b_0=B(0)=0</tex> как и <tex dpi="350">Seq(A)</tex> и в <tex dpi="350"Mset(A)></tex> в мире непомеченных объектов. | + | Действует ограничение на <tex dpi="350">b_0=B(0)=0</tex> как и <tex dpi="350">Seq(A)</tex> и в <tex dpi="350"Mset(A)></tex> в мире непомеченных объектов. '''опечатки, формулировки''' |
====Пример==== | ====Пример==== | ||
− | '''[https://ru.wikipedia.org/wiki/Перестановка Перестановки]''' | + | '''[https://ru.wikipedia.org/wiki/Перестановка Перестановки]''' '''вроде тоже можно дать ссылку на нирк''' |
* <tex dpi="350">P=Seq(Z)</tex> | * <tex dpi="350">P=Seq(Z)</tex> | ||
* <tex dpi="350">P(t)=\frac{1}{1-t}</tex> | * <tex dpi="350">P(t)=\frac{1}{1-t}</tex> | ||
Строка 333: | Строка 337: | ||
==Урны== | ==Урны== | ||
− | + | '''что такое урна''' | |
Урна характеризуется только количеством атомов в ней, поэтому <tex dpi="350">a_n=1</tex> | Урна характеризуется только количеством атомов в ней, поэтому <tex dpi="350">a_n=1</tex> | ||
Строка 347: | Строка 351: | ||
<tex dpi="350">A=Set_k(B)</tex> {{---}} множество из <tex dpi="350">k</tex> объектов (порядок не важен). | <tex dpi="350">A=Set_k(B)</tex> {{---}} множество из <tex dpi="350">k</tex> объектов (порядок не важен). | ||
− | <tex dpi="350">\left \{ a_1, a_2, ..., a_k \right \} \in B</tex> | + | <tex dpi="350">\left \{ a_1, a_2, ..., a_k \right \} \in B</tex> '''что это такое''' |
Каждому <tex dpi="350">Set_k(B)</tex> [[Отображения|биективно]] соответствует <tex dpi="350">k!</tex> последовательностей в <tex dpi="350">Seq_k(B)</tex>, потому что все объекты различны. | Каждому <tex dpi="350">Set_k(B)</tex> [[Отображения|биективно]] соответствует <tex dpi="350">k!</tex> последовательностей в <tex dpi="350">Seq_k(B)</tex>, потому что все объекты различны. | ||
Строка 363: | Строка 367: | ||
<tex dpi="350">Set(A)(t)=\sum_{k=0}^{\infty}\frac{A(t)^k}{k!}=e^{A(t)}</tex> | <tex dpi="350">Set(A)(t)=\sum_{k=0}^{\infty}\frac{A(t)^k}{k!}=e^{A(t)}</tex> | ||
− | <tex dpi="350">Set(A)</tex> {{---}} урна, где вместо атомов взяли объекты класса <tex dpi="350">A</tex>. | + | <tex dpi="350">Set(A)</tex> {{---}} урна, где вместо атомов взяли объекты класса <tex dpi="350">A</tex>. '''напиши чуть более развернуто, а не предложениями в три слова''' |
==Циклы== | ==Циклы== | ||
Строка 384: | Строка 388: | ||
===Неограниченная конструкция=== | ===Неограниченная конструкция=== | ||
− | <tex dpi="350">Cycle(A)(t)=\sum_{k=0}^{\infty}Cycle_k(A)(t)=0+\sum_{k=1}^{\infty}\frac{A(t)^k}{k}=-ln \left (1-A(t) \right )=ln\left (\frac{1}{1-A(t)}\right )</tex> | + | <tex dpi="350">Cycle(A)(t)=\sum_{k=0}^{\infty}Cycle_k(A)(t)=0+\sum_{k=1}^{\infty}\frac{A(t)^k}{k}=-ln \left (1-A(t) \right )=ln\left (\frac{1}{1-A(t)}\right )</tex> '''почему''' |
==См.также== | ==См.также== |
Версия 18:58, 26 июня 2020
ПЕРЕБОРЩИЛ СО ССЫЛКАМИ В комбинаторике, особенно в аналитической комбинаторике, символический метод - это метод подсчета комбинаторных объектов. Он использует внутреннюю структуру объектов для получения формул их производящих функций. Этот метод в основном связан с Филиппом Флайоле и подробно описан в части A его книги с Робертом Седжвиком "Аналитическая комбинаторика"[1].
Содержание
- 1 Базовые определения
- 2 Непомеченные комбинаторные объекты
- 3 Помеченные объекты
- 3.1 Свойства экспоненциальной производящей функции
- 3.2 Помеченные объекты
- 3.3 Объединение комбинаторных классов
- 3.4 Пары комбинаторных классов (декартово произведение комбинаторных классов)
- 3.5 Последовательности комбинаторных классов
- 3.6 Урны
- 3.7 Множества
- 3.8 Циклы
- 3.9 См.также
- 3.10 Примeчания
- 3.11 Источники информации
Базовые определения
Каждый комбинаторный объект состоит из атомов.
У атомов определен вес
. Вес объектов равен сумме весов составляющих его атомов.
Определение: |
Считающей последовательностью называется последовательность | , где — количество объектов веса .
Определение: |
Комбинаторным классом множество комбинаторных объектов, обладающих каким-то свойством. | называется
Непомеченные комбинаторные объекты
НЕ ДЕЛАЙ СТОЛЬКО ПУСТЫХ СТРОК
Производящую функцию класса
обозначим . Тут вообще ничего не понятно. Что за точки и кружочки, что такое А и а_i
Определение: |
Комбинаторным объектом | называется комбинаторный объект, состоящий из одного атома веса .
Считающая последовательность: .
И ТУТ Производящая функция последовательности:
.
Определение: |
Комбинаторным объектом | называется комбинаторный объект, состоящий из одного атома веса . .
Считающая последовательность: .
Производящая функция последовательности: .
Объединение комбинаторных классов
Определение: |
Объединением комбинаторных классов | и называется комбинаторный класс .
плюс?
При объединении комбинаторных классов одинаковые объекты разных классов считаются разными ну тогда стоит переформулировать определение или сказать что-нибудь про помеченное объединение. Это делается так Переформулируй, звучит не оч, чтобы не рассматривать внутреннюю структуру классов, а работать только со считающими последовательностями и производящими функциями.
Пары комбинаторных классов (декартово произведение комбинаторных классов)
Определение: |
Парой комбинаторных классов | и называется комбинаторный класс .
Утверждение: |
Верно, потому что коэффициенты производящей функции описываются равенством выше внеси в один пункт с определением, если тут нечего сказать. Можешь добавить линк на операции с формальными рядами |
Последовательности комбинаторных классов
Ограниченная конструкция
Определение: |
Последовательностью | объектов из называется .
Утверждение: |
Докажем по индукции: База .
Переход.
|
Неограниченная конструкция
Определение: |
Последовательностью (всех возможных длин) переформулируй объектов из | называется .
Утверждение: |
Геометрическая прогрессия) | (
Ограничение: . Этому есть как техническое, так и комбинаторное объяснение.
- Технически, если , то мы будем делить на отрицательное число; если , то на функцию, у которой свободный член , — что формализм производящих функций сделать не позволяет.
- Комбинаторное объяснение заключается в том, что если объектов веса ноль более 0, то мы можем создать бесконечное количество последовательностей веса 0 (комбинируя такие объекты), а мы хотим работать с конечными количествами последовательностей.
- какой-то бесполезный факт
Примеры
- Последовательночти из не менее 3 объектов: опечатка и грамматика
- Последовательности чётной длины:
Комбинаторный объект "Натуральные числа"
Вес числа равен его значению. Каждое натуральное число встречается 1 раз.
Считающая последовательность:
НЕ ПИШИ ЭТО МАТРИЦЕЙ. ЕСТЬ EQUATION
что такое I и почему равенство выполняется?
разбиение на слагаемые. на нирк тоже есть эта информация
— упорядоченное
Множества
Множества
— последовательности без повторений и порядка элементов. общая формула и её вывод?Пример
Мультимножества
вывод общей формулы?
Мультимножества
— последовательности с повторениями, но без порядка элементов.Как и с
существует ограничение на : .
Циклы
Ограниченная конструкция
Определение: |
Цикл | — ориентированная циклическая последовательность из объектов класса .
Неограниченная конструкция
Определение: |
Циклы | .
Утверждение: |
почему? функция Эйлера. , где — |
Помеченные объекты
какое-то бесполезное введение. Что значит "удобнее"? просто есть такие классы и всё) Однако порой некоторые комбинаторные классы удобнее обозначать как помеченные. Например, — помеченные графы. С помеченными объектами используется экспоненциальная производящая функция.
Напомню, Научный текст нужно писать безлично что если
— считающая последовательность, то производящие функции выражаются следующим образом:Обычная | |
Экспоненциальная |
Свойства экспоненциальной производящей функции
Утверждение: |
Пусть — экспоненциальная производящая функция последовательности , тогда — экспоненциальная производящая функция последовательности |
Утверждение: |
НУ НЕЕЕ |
Утверждение: |
Пусть — экспоненциальная производящая функция последовательности , тогда — экспоненциальная производящая функция последовательности |
Утверждение: |
С точки зрения комбинаторики композиция производящих функций и означает подстановку вместо каждого возможного атома в всех объектов из класса .
|
Помеченные объекты
Помеченные комбинаторные объекты отличаются тем, что все атомы имеет разные значки; Если вес объекта равен
, то все атомы пронумерованы различными целыми числами от до .
Далее под производящей функцией будет подразумеваться экспоненциальная производящая функция. это лучше вынести в самое начало раздела и сказать, почему
Определение: |
Комбинаторным объектом | называется комбинаторный объект, состоящий из одного атома веса .
Производящая функция последовательности: .ВСТАВЬ В ОПРЕДЕЛЕНИЕ
Определение: |
Комбинаторным объектом | называется комбинаторный объект, состоящий из одного атома веса . .
Производящая функция последовательности: .ВСТАВЬ В ОПРЕДЕЛЕНИЕ
Объединение комбинаторных классов
Одинаковых объектов также нет, мы ставим разные метки на одинаковые объекты из разных классов, чтобы сделать их различными.
Пары комбинаторных классов (декартово произведение комбинаторных классов)
Напрямую декартово произведение нам не даст корректный комбинаторный объект. переформулируй
Тогда пара будет иметь вес 5, но атомы не будут иметь различные пометки от 1 до 5.
Поэтому введем оператор
, который- Перебирает все пары из и .
- В каждой паре перебирает все возможные способы перенумеровать атомы. Нумерация идёт в том же порядке, что и изначальная. То есть для каждого цикла при фиксированном наборе номеров есть ровно 1 способ занумеровать. Таким образом, в классе , но не будет лежать . будет лежать
Последовательности комбинаторных классов
ЗДЕСЬ ВЕЗДЕ БОЛЬШЕ КОММЕНТАРИЕВ К ПРОИСХОДЯЩЕМУ, НЕ ТОЛЬКО ОДНИ ФОРМУЛЫ
Ограниченная конструкция
Последовательности длины
, как и в непомеченных комбинаторных объектах, формируются следующим образом:- Мы составляем все возможные последовательности из объектов из
- Затем всеми возможными способами их перенумеруем.
научный текст пишется безлично
Обозначаются .
в научном тексте не должно быть неполных предложений
Неограниченная конструкция
Определение
и соответствующая производящая функция не изменились.Действует ограничение на
как и и в в мире непомеченных объектов. опечатки, формулировкиПример
Перестановки вроде тоже можно дать ссылку на нирк
- Обычной производящей функции соответствует считающая последовательность , поэтому .
Урны
что такое урна Урна характеризуется только количеством атомов в ней, поэтому
Множества
В помеченном мире
, потому что не бывает одинаковых элементов в множествах.Ограниченная конструкция
— множество из объектов (порядок не важен).
что это такое
Каждому биективно соответствует последовательностей в , потому что все объекты различны.
Неограниченная конструкция
— множества объектов (порядок не важен).
Ограничение
также действует.
— урна, где вместо атомов взяли объекты класса . напиши чуть более развернуто, а не предложениями в три слова
Циклы
Ограниченная конструкция
Утверждение: |
Циклов -войНАПИШИ СЛОВАМИ длины . |
Утверждение: |
Каждому циклу циклические перестановки элементов цикла). длины биективно соответствует упорядоченных последовательностей ( |
Неограниченная конструкция
почему
См.также
- Конструирование комбинаторных объектов и их подсчёт
- Функция Эйлера
- Лемма Бёрнсайда и Теорема Пойа
- Задача об ожерельях
- Числа Каталана
- Генерация комбинаторных объектов в лексикографическом порядке
- Подсчет деревьев