Функция Эйлера — различия между версиями
(Отмена правки 75530, сделанной MetaMockery (обсуждение)) |
(Отмена правки 75529, сделанной MetaMockery (обсуждение)) |
||
Строка 107: | Строка 107: | ||
}} | }} | ||
+ | |||
+ | == Старые записи == | ||
+ | |||
+ | ==== Примеры: ==== | ||
+ | <tex> \varphi (1) = 1</tex>, <tex> \varphi (4) = 2</tex>,<br> | ||
+ | <tex> \varphi (2) = 1</tex>, <tex> \varphi (5) = 4</tex>,<br> | ||
+ | <tex> \varphi (3) = 2</tex>, <tex> \varphi (6) = 2</tex>.<br> | ||
+ | ==== Свойства функции Эйлера ==== | ||
+ | *1. '''Доказательство:''' <tex> \varphi (p) = p-1 </tex>, p {{---}} [[Простые числа|простое]], <tex> \varphi (p^{\alpha}) = p^{\alpha} - p^{\alpha - 1}</tex>. | ||
+ | ** Логически понятно, если строго, то выводится из 2 свойства. | ||
+ | *2. Пусть <tex> a = {p_1}^{\alpha_1} {p_2}^{\alpha_2} \ldots {p_k}^{\alpha_k}</tex> — каноническое разложение числа '''a''', тогда | ||
+ | <center><tex> \varphi (a) = a(1 - \frac{1}{p_1}) (1 - \frac{1}{p_2}) \ldots (1 - \frac{1}{p_k})</tex>. </center> | ||
+ | |||
+ | ** '''Доказательство:''' Пусть <tex> x </tex> пробегает числа <tex> 0,1,2,\ldots,a-1</tex>, положим <tex> \sigma_x = (a, x)</tex> {{---}} [[Наибольший общий делитель|НОД]]. Тогда <tex> \varphi(a) </tex> есть число значений <tex> \sigma_x </tex>, равных единице. Возьмем функцию, которая равна единице, если <tex> \sigma_x = 1</tex>, и равна нулю в остальных случаях. Вот такая функция : <tex>\sum_{d | n} \mu(d) = \begin{cases} 1,&n=1,\\ 0,&n>1.\end{cases}</tex>, где <tex> \mu(a) </tex> {{---}} [[Функция Мебиуса|функция Мебиуса]]. Отсюда <tex> \varphi(a) = \sum_{0 \le x \le a-1}(\sum_{d | a} \mu(d))</tex>. Поскольку справа сумма в скобках берется по всем делителям '''d''' числа <tex> \sigma_x = ( x , a )</tex>, то '''d''' делит '''x''' и '''a''' . Значит в первой сумме справа в суммировании участвуют только те '''x''' , которые кратны '''d''' . Таких '''x''' среди чисел <tex> 0,1,2,\ldots,a-1</tex> ровно <tex> \frac{a}{d} </tex> штук. Получается, что <tex> \varphi(a) = \sum_{d | a} \frac{a}{d}\mu(d) = a\sum_{d | a} \frac{\mu(d)}{d} = a(1 - \frac{1}{p_1}) (1 - \frac{1}{p_2}) \ldots (1 - \frac{1}{p_k})</tex>. | ||
+ | |||
+ | *3. Функция Эйлера является [[Мультипликативность функции, свертка Дирихле|мультипликативной]] <tex> \varphi(a_1 a_2) = \varphi(a_1)\varphi(a_2) </tex>. | ||
+ | ** Вытекает из первого свойства. | ||
+ | |||
+ | ==== Еще примеры ==== | ||
+ | * <tex> \varphi(60) = 60(1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{5}) = 16</tex> | ||
+ | * <tex> \varphi(81) = 81 - 27 = 54 </tex> |
Версия 16:41, 24 декабря 2020
Содержание
Функция Эйлера
Определение: |
Функция | называется мультипликативной, если для любых взаимно-простых .
Определение: |
Функция Эйлера | - определяется как количество натуральных чисел, не превосходящих и взаимно-простых с .
Теорема (Мультипликативность функции Эйлера): |
Для любых взаимно-простых чисел
|
Доказательство: |
Запишем натуральных чисел, не превосходящих , в виде прямоугольной таблицы с столбцами и строками, располагая первые чисел в первой строке, вторые чисел во второй и т.д.Поскольку и взаимно-просты, то целое взаимно-просто с если и только если оно взаимно-просто как с , так и с . Итак, нужно доказать, что количество чисел в таблице, взаимно-простых с и с равно . Мы знаем, что число взаимно-просто с натуральным если и только если его остаток при делении на взаимно-просто с . Поэтому, числа в таблице, взаимно-простые с , заполняют ровно столбцов таблицы.Давайте рассмотрим Подставив в данные рассуждения последовательных членов арифметической прогрессии . Тогда, если , то остатки всех этих чисел по модулю разные, а значит образуют все множество остатков , причем каждый остаток получается ровно из одного из членов прогрессии. , получим, что в каждом столбце таблицы имеется ровно чисел, взаимно-простых с . Следовательно всего чисел, взаимно-простых и с и с равно , что и требовалось доказать. |
Функции , и , их мультипликативность и значения
Каноническое разложение числа
Функция
Функция
определяется как сумма делителей натурального числаДля простого числа
легко посчитать . При этом легко обобщается для некоторой степени :В силу мультипликативности функции:
Функция
Функция
определяется как число положительных делителей натурального числа :Если
и взаимно-просты, то каждый делитель произведения может быть единственным образом представлен в виде произведения делителей и делителей , и обратно, каждое такое произведение является делителем . Отсюда следует, что функция мультипликативна:Для простого числа
легко посчитать . При этом легко обобщается для некоторой степени :В силу мультипликативности функции:
Функция
Для простого числа
легко посчитать . На некоторую степень формулу можно обобщить:Обосновывается следующим образом: Все не взаимно-простые с
числа в диапазоне от 1 до , очевидно, кратны . Всего таких чисел .В силу мультипликативности функции:
Малая теорема Ферма и теорема Эйлера
Теорема (Теорема Эйлера): |
Если и - взаимно-простые целые числа, то |
Доказательство: |
Число Рассмотрим вычеты по модулю называется вычетом по модулю , если . Вычет называется обратимым вычетом, если существует вычет , что . Заметим, что вычет обратим тогда и только тогда, когда и взаимно-просты. В таком случае, у числа существует всего обратимых вычетов. Пусть - множество всех обратимых вычетов по модулю . . Так как и взаимно-просты, то вычет обратим. Пусть - все обратимые вычеты по модулю . Тогда вычет , равный произведению всех обратимых вычетов, тоже обратим. Заметим, что отображение , заданное формулой является биекцией. В таком случае в выражении , в правой части стоит произведение всех обратимых вычетов, но взятое в другом порядке. Тогда . Умножая обе части на вычет, обратный к , получим, что , что и требовалось доказать. |
Следствием теоремы Эйлера является малая теорема Ферма. У нее также есть доказательство без использования более общей теоремы Эйлера, однако его мы приводить не будем.
Теорема (Малая теорема Ферма): |
Если целое число и простое число - взаимно-просты, то |
Доказательство: |
Так как | - простое, то . Воспользуемся теоремой Эйлера, тогда , что и требовалось доказать.
Еще теоремы, связанные с функцией Эйлера
Теорема: |
Для любого натурального числа выполнено равенство |
Доказательство: |
Данную теорему можно доказать "напролом", пользуясь формулой для , а можно более элегантно:Рассмотрим Заметим, что множество значений дробей . Каждую дробь представим в виде несократимой дроби . - это множество делителей числа . Так как дробь несократима, то и взаимно-просты. Зная, что , легко понять, что всего дробей со знаменателем ровно . Так как, все дробей мы представили в несократимом виде, где знаменатель является делителем , то , так как всего дробей , что и требовалось доказать. |
Старые записи
Примеры:
, ,
, .
Свойства функции Эйлера
- 1. Доказательство: простое, .
- Логически понятно, если строго, то выводится из 2 свойства.
, p — - 2. Пусть — каноническое разложение числа a, тогда
- Доказательство: Пусть НОД. Тогда есть число значений , равных единице. Возьмем функцию, которая равна единице, если , и равна нулю в остальных случаях. Вот такая функция : , где — функция Мебиуса. Отсюда . Поскольку справа сумма в скобках берется по всем делителям d числа , то d делит x и a . Значит в первой сумме справа в суммировании участвуют только те x , которые кратны d . Таких x среди чисел ровно штук. Получается, что . пробегает числа , положим —
- 3. Функция Эйлера является мультипликативной .
- Вытекает из первого свойства.