Функциональные зависимости: замыкание атрибутов, неприводимые множества функциональных зависимостей, их построение — различия между версиями
Darkey (обсуждение | вклад) (→Неприводимые множества функциональных зависимостей) |
Darkey (обсуждение | вклад) (→Неприводимые множества функциональных зависимостей) |
||
Строка 63: | Строка 63: | ||
|proof= Доказательство по построению: <br> | |proof= Доказательство по построению: <br> | ||
* По правилу расщепления делаем все части единичными. Понятно, что замыкание множества ФЗ от такой операции не изменится, так как старая ФЗ может быть получена по правилу объединения. | * По правилу расщепления делаем все части единичными. Понятно, что замыкание множества ФЗ от такой операции не изменится, так как старая ФЗ может быть получена по правилу объединения. | ||
− | * Для | + | * Для каждого правила пытаемся минимизировать по включению левую часть всеми возможными способами. Чтобы проверить, что атрибут X можно удалить из <tex>A \cup \{X\} \to B</tex>, нужно проверить, что если <tex>B \subset A^+_S</tex> выполняется, то <tex>A \to B</tex>, то можно минимизировать левую часть, отбросив <tex>X</tex>. Потенциально из одной ФЗ может получиться множество ФЗ, где левая часть минимальна по включению. |
* Пытаемся удалить по одному правилу <tex>A \to B</tex>. Если <tex>B \subset A^+_{S\backslash\{A \to B\}} \to B</tex>, то по теореме <tex>A \to B \in S^+</tex>, значит это правило можно удалить. | * Пытаемся удалить по одному правилу <tex>A \to B</tex>. Если <tex>B \subset A^+_{S\backslash\{A \to B\}} \to B</tex>, то по теореме <tex>A \to B \in S^+</tex>, значит это правило можно удалить. | ||
}} | }} |
Версия 13:24, 21 января 2021
Содержание
Замыкание атрибутов
Определение: |
Замыкание множества атрибутов | над множеством ФЗ — максимальное по включению множество атрибутов, обозначаемое , функционально зависящих от .
Максимальный размер равен числу атрибутов в отношении.
Основное свойство замыкания множества атрибутов
Теорема: |
Доказательство: |
По определению замыкания атрибутов. |
Данная теорема позволяет проверять эквивалентность множеств ФЗ без вычисления замыканий ФЗ:
Даны множества функциональных зависимостей и , необходимо проверить является ли эквивалентным , то есть требуется показать, что и . Теорема выше позволяет проверять принадлежит ли ФЗ некоторому замыканию функциональных зависимостей, тогда чтобы показать, что достаточно проверить, что выполняется , то есть для каждой базовой функциональной зависимости из построить замыкание атрибутов над и проверить, что .
Утверждение: |
Следствие: — надключ — множество всех атрибутов |
— множество всех атрибутов и по теореме , то по определению функциональной зависимости соответствует ровно один и значит — надключ. |
Данное следствие позволяет формально выделять ключи и надключи.
Построение замыкания атрибутов
\\ исходно совпадает с множеством, замыкание атрибутов которого ищем do foreach : \\ — множество ФЗ if then while есть изменения
Теорема: |
Доказательство: |
1) |
Неприводимые множества функциональных зависимостей
Определение: |
Множество ФЗ
| неприводимо, если:
Определение: |
Множество ФЗ | минимально по включению, если ни одна функциональная зависимость из множества не может быть удалена из множества без изменения его замыкания .
Теорема: |
Для любого множества ФЗ существует эквивалентное неприводимое множество ФЗ (НМФЗ). |
Доказательство: |
Доказательство по построению:
|
Оценка времени построения НМФЗ
- Расщепление правых частей - линейно по размеру правых частей.
- Удаление атрибута . На данном этапе из одной ФЗ возможно получить множество ФЗ минимальных по включению. Синтетическая оценка множества потенциальных множеств минимальных по включению мощностью это . То есть на ФЗ с большой левой частью возможен экспоненциальный рост количества ФЗ с минимальной по включению левой частью. Но на реальных данных большая левая часть в ФЗ практически не встречается.
- Удаление правила . На этом этапе не добавляем ФЗ, а только удаляем, поэтому сложность этот этап не добавит. Заметим, что каждую ФЗ на этом этапе можно рассматривать лишь один раз, так как все операции по приведению множества к неприводимому сохраняют исходное замыкание ФЗ.
Замечания о НМФЗ
- Неприводимые множества ФЗ обычно много меньше множеств исходного множества ФЗ.
- Неприводимое множество ФЗ может не являться минимальным по мощности.